We present results from an experiment designed to better understand the mechanism by which ocean currents and winds control flotsam drift. The experiment consisted of deploying in the Florida Current and subsequent satellite tracking of specially designed drifting buoys of various sizes, buoyancies, and shapes. We explain the differences in the trajectories described by the special drifters as a result of their inertia, primarily buoyancy, which constrains the ability of the drifters to adapt their velocities to instantaneous changes in the ocean current and wind that define the carrying flow field. Our explanation of the observed behavior follows from the application of a recently proposed Maxey–Riley theory for the motion of finite-sized particles floating on the ocean surface. The nature of the carrying flow and the domain of validity of the theory are clarified, and a closure proposal is made to fully determine its parameters in terms of the carrying fluid system properties and inertial particle characteristics.

1.
Ø.
Breivik
,
A. A.
Allen
,
C.
Maisondieu
, and
M.
Olagnon
, “
Advances in search and rescue at sea
,”
Ocean Dyn.
63
,
83
88
(
2013
).
2.
L.
Bellomo
,
A.
Griffa
,
S.
Cosoli
,
P.
Falco
,
R.
Gerin
,
I.
Iermano
,
A.
Kalampokis
,
Z.
Kokkini
,
A.
Lana
,
M.
Magaldi
,
I.
Mamoutos
,
C.
Mantovani
,
J.
Marmain
,
E.
Potiris
,
J.
Sayol
,
Y.
Barbin
,
M.
Berta
,
M.
Borghini
,
A.
Bussani
,
L.
Corgnati
,
Q.
Dagneaux
,
J.
Gaggelli
,
P.
Guterman
,
D.
Mallarino
,
A.
Mazzoldi
,
A.
Molcard
,
A.
Orfila
,
P.-M.
Poulain
,
C.
Quentin
,
J.
Tintoré
,
M.
Uttieri
,
A.
Vetrano
,
E.
Zambianchi
, and
V.
Zervakis
, “
Toward an integrated HF radar network in the Mediterranean Sea to improve search and rescue and oil spill response: The TOSCA project experience
,”
J. Oper. Oceanogr.
8
,
95
107
(
2015
).
3.
M. T.
Brooks
,
V. J.
Coles
, and
W. C.
Coles
, “
Inertia influences pelagic Sargassum advection and distribution
,”
Geophys. Res. Lett.
46
,
2610
2618
, (
2019
).
4.
M.
Wang
,
C.
Hu
,
B.
Barnes
,
G.
Mitchum
,
B.
Lapointe
, and
J. P.
Montoya
, “
The great Atlantic Sargassum belt
,”
Science
365
,
83
87
(
2019
).
5.
K. L.
Law
,
S.
Morét-Ferguson
,
N. A.
Maximenko
,
G.
Proskurowski
,
E. E.
Peacock
,
J.
Hafner
, and
C. M.
Reddy
, “
Plastic accumulation in the North Atlantic subtropical gyre
,”
Science
329
,
1185
1188
(
2010
).
6.
A.
Cozar
,
F.
Echevarria
,
J. I.
Gonzalez-Gordillo
,
X.
Irigoien
,
B.
Ubeda
,
S.
Hernandez-Leon
,
A. T.
Palma
,
S.
Navarro
,
J.
Garcia-de Lomas
,
A.
Ruiz
,
M. L.
Fernandez-de Puelles
, and
C. M.
Duarte
, “
Plastic debris in the open ocean
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
10239
10244
(
2014
).
7.
J. A.
Trinanes
,
M. J.
Olascoaga
,
G. J.
Goni
,
N. A.
Maximenko
,
D. A.
Griffin
, and
J.
Hafner
, “
Analysis of flight MH370 potential debris trajectories using ocean observations and numerical model results
,”
J. Oper. Oceanogr.
9
,
126
138
(
2016
).
8.
P.
Miron
,
F. J.
Beron-Vera
,
M. J.
Olascoaga
, and
P.
Koltai
, “
Markov-chain-inspired search for MH370
,”
Chaos
29
,
041105
(
2019
).
9.
I.
Rypina
,
S. R.
Jayne
,
S.
Yoshida
,
A. M.
Macdonald
,
E.
Douglas
, and
K.
Buesseler
, “
Short-term dispersal of Fukushima-derived radionuclides off Japan: Modeling efforts and model-data intercomparison
,”
Biogeosciences
10
,
4973
4990
(
2013
).
10.
J. P.
Matthews
,
L.
Ostrovsky
,
Y.
Yoshikawa
,
S.
Komori
, and
H.
Tamura
, “
Dynamics and early post-tsunami evolution of floating marine debris near Fukushima Daiichi
,”
Nat. Geosci.
10
,
598
603
(
2017
).
11.
S.
Szanyi
,
J. V.
Lukovich
, and
D. G.
Barber
, “
Lagrangian analysis of sea-ice dynamics in the Arctic Ocean
,”
Polar Res.
35
,
30778
(
2016
).
12.
C. B.
Paris
,
S. A.
Murawski
,
M. J.
Olascoaga
,
A. C.
Vaz
,
I.
Berenshtein
,
P.
Miron
, and
F. J.
Beron-Vera
, “
Connectivity of the Gulf of Mexico continental shelf fish populations and implications of simulated oil spills
,” in
Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War
, edited by
S. A.
Murawski
,
C. H.
Ainsworth
,
S.
Gilbert
,
D. J.
Hollander
,
C. B.
Paris
,
M.
Schlüter
, and
D. L.
Wetzel
(
Springer Nature
,
Switzerland
,
2020
), pp.
369
389
.
13.
N.
Putman
,
R.
Lumpkin
,
A.
Sacco
, and
K.
Mansfield
, “
Passive drift or active swimming in marine organisms?
,”
Proc. R. Soc. B
283
,
20161689
(
2016
).
14.
M. J.
Olascoaga
and
G.
Haller
, “
Forecasting sudden changes in environmental pollution patterns
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
4738
4743
(
2012
).
15.
M. K.
Gough
,
F. J.
Beron-Vera
,
M. J.
Olascoaga
,
J.
Sheinbaum
,
J.
Juoanno
, and
R.
Duran
, “
Persistent transport pathways in the Northwestern Gulf of Mexico
,”
J. Phys. Oceanogr.
49
,
353
367
(
2019
).
16.
R.
Lumpkin
and
M.
Pazos
, “
Measuring surface currents with surface velocity program drifters: The instrument, its data and some recent results
,” in
Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics
, edited by
A.
Griffa
,
A. D.
Kirwan
,
A.
Mariano
,
T.
Özgökmen
, and
T.
Rossby
(
Cambridge University Press
,
2007
), Chap. 2, pp.
39
67
.
17.
F. J.
Beron-Vera
,
M. J.
Olascoaga
, and
R.
Lumpkin
, “
Inertia-induced accumulation of flotsam in the subtropical gyres
,”
Geophys. Res. Lett.
43
,
12228
12233
, (
2016
).
18.
F. J.
Beron-Vera
,
M. J.
Olascoaga
, and
P.
Miron
, “
Building a Maxey–Riley framework for surface ocean inertial particle dynamics
,”
Phys. Fluids
31
,
096602
(
2019
).
19.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
(
1983
).
20.
E. E.
Michaelides
, “
Review—The transient equation of motion for particles, bubbles and droplets
,”
J. Fluids Eng.
119
,
233
247
(
1997
).
21.
A.
Provenzale
, “
Transport by coherent barotropic vortices
,”
Annu. Rev. Fluid Mech.
31
,
55
93
(
1999
).
22.
J. H. E.
Cartwright
,
U.
Feudel
,
G.
Károlyi
,
A.
de Moura
,
O.
Piro
, and
T.
Tél
, “
Dynamics of finite-size particles in chaotic fluid flows
,” in
Nonlinear Dynamics and Chaos: Advances and Perspectives
, edited by
M.
Thiel
, et al
(
Springer-Verlag Berlin Heidelberg
,
2010
), pp.
51
87
.
23.
A.
Babiano
,
J. H.
Cartwright
,
O.
Piro
, and
A.
Provenzale
, “
Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems
,”
Phys. Rev. Lett.
84
,
5764
5767
(
2000
).
24.
R. D.
Vilela
,
A. P. S.
de Moura
, and
C.
Grebogi
, “
Finite-size effects on open chaotic advection
,”
Phys. Rev. E
73
,
026302
(
2006
).
25.
T.
Sapsis
and
G.
Haller
, “
Instabilities in the dynamics of neutrally buoyant particles
,”
Phys. Fluids
20
,
017102
(
2008
).
26.
F. J.
Beron-Vera
,
M. J.
Olascoaga
,
G.
Haller
,
M.
Farazmand
,
J.
Triñanes
, and
Y.
Wang
, “
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
,”
Chaos
25
,
087412
(
2015
).
27.
G.
Haller
,
A.
Hadjighasem
,
M.
Farazmand
, and
F.
Huhn
, “
Defining coherent vortices objectively from the vorticity
,”
J. Fluid Mech.
795
,
136
173
(
2016
).
28.
Ø.
Breivik
and
A.
Allen
, “
An operational search and rescue model for the Norwegian Sea and the North Sea
,”
J. Mar. Syst.
69
,
99
113
(
2008
).
29.
A. V.
Duhec
,
R. F.
Jeanne
,
N.
Maximenko
, and
J.
Hafner
, “
Composition and potential origin of marine debris stranded in the Western Indian Ocean on remote Alphonse Island, Seychelles
,”
Mar. Pollut. Bull.
96
,
76
86
(
2015
).
30.
M. R.
Allshouse
,
G. N.
Ivey
,
R. J.
Lowe
,
N. L.
Jones
,
C.
Beegle-krause
,
J.
Xu
, and
T.
Peacock
, “
Impact of windage on ocean surface Lagrangian coherent structures
,”
Environ. Fluid Mech.
17
,
473
483
(
2017
).
31.
P. Y.
Le Traon
,
F.
Nadal
, and
N.
Ducet
, “
An improved mapping method of multisatellite altimeter data
,”
J. Atmos. Oceanic Technol.
15
,
522
534
(
1998
).
32.
D. P.
Dee
,
S. M.
Uppala
,
A. J.
Simmons
,
P.
Berrisford
,
P.
Poli
,
S.
Kobayashi
,
U.
Andrae
,
M. A.
Balmaseda
,
G.
Balsamo
,
P.
Bauer
,
P.
Bechtold
,
A. C. M.
Beljaars
,
L.
van de Berg
,
J.
Bidlot
,
N.
Bormann
,
C.
Delsol
,
R.
Dragani
,
M.
Fuentes
,
A. J.
Geer
,
L.
Haimberger
,
S. B.
Healy
,
H.
Hersbach
,
E. V.
Holm
,
L.
Isaksen
,
P.
Kallberg
,
M.
Kohler
,
M.
Matricardi
,
A. P.
McNally
,
B. M.
Monge-Sanz
,
J.-J.
Morcrette
,
B.-K.
Park
,
C.
Peubey
,
P.
de Rosnay
,
C.
Tavolato
,
J.-N.
Thepaut
, and
F.
Vitart
, “
The ERA-interim reanalysis: Configuration and performance of the data assimilation system
,”
Q. J. R. Meteorol. Soc.
137
,
553
597
(
2011
).
33.

On the sphere, with local coordinates x1 = (λλ0) · a cos ϑ0 and x2 = (ϑϑ0a, where a is the planet’s mean radius and λ (respectively, ϑ) is longitude (respectively, latitude), the Maxey–Riley set takes the form (5) with f = 2Ω sin ϑ + τv1, where Ω is the planet’s rotation rate and τa1tan𝜗, DD  tv=tv+(v)(γ1v1,v2)=tv+γ1(1v)v1+(2v)v2, where γ ≔ sec ϑ cos ϑ and ω=γ11v22v1+τv1. In turn, the reduced Maxey–Riley set takes the form (12) with DD  tu=tu+(u)(γ1u1,u2)=tu+γ1(1u)u1+(2u)u2, with γ, f, and ω as above.

34.
P. H.
Le Blond
and
L. A.
Mysak
,
Waves in the Ocean
, Elsevier Oceanography Series Vol. 20 (
Elsevier Science
,
Amsterdam
,
1978
), p.
602
.
35.
O. M.
Phillips
,
Dynamics of the Upper Ocean
(
Cambridge University Press
,
1997
).
36.
R.
Gatignol
, “
The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow
,”
J. Mec. Theor. Appl.
2
,
143
160
(
1983
).
37.
T. R.
Auton
,
F. C. R.
Hunt
, and
M.
Prud’Homme
, “
The force exerted on a body in inviscid unsteady non-uniform rotational flow
,”
J. Fluid Mech.
197
,
241
(
1988
).
38.
L.
Montabone
, “
Vortex dynamics and particle transport in barotropic turbulence
,” Ph.D. thesis,
University of Genoa
,
Italy
,
2002
.
39.
T. R.
Auton
, “
The lift force on a spherical body in a rotational flow
,”
J. Fluid Mech.
183
,
199
218
(
1987
).
40.
A. E.
Gill
,
Atmosphere-Ocean Dynamics
(
Academic
,
1982
).
41.
G. H.
Ganser
, “
A rational approach to drag prediction of spherical and nonspherical particles
,”
Powder Technol.
77
,
143
152
(
1993
).
42.
N.
Fenichel
, “
Geometric singular perturbation theory for ordinary differential equations
,”
J. Differ. Equations
31
,
53
98
(
1979
).
43.
C. K. R. T.
Jones
, “
Geometric singular perturbation theory
,” in
Dynamical Systems
, Lecture Notes in Mathematics (
Springer-Verlag
,
Berlin
,
1995
), pp.
44
118
.
44.
G.
Haller
and
T.
Sapsis
, “
Where do inertial particles go in fluid flows?
,”
Physica D
237
,
573
583
(
2008
).
45.
J.
Röhrs
,
K. H.
Christensen
,
L. R.
Hole
,
G.
Broström
,
M.
Drivdal
, and
S.
Sundby
, “
Observation-based evaluation of surface wave effects on currents and trajectory forecasts
,”
Ocean Dyn.
62
,
1519
1533
(
2012
).
46.
O.
Nesterov
, “
Consideration of various aspects in a drift study of MH370 debris
,”
Ocean Sci.
14
,
387
402
(
2018
).
47.
F. J.
Beron-Vera
,
Y.
Wang
,
M. J.
Olascoaga
,
G. J.
Goni
, and
G.
Haller
, “
Objective detection of oceanic eddies and the Agulhas leakage
,”
J. Phys. Oceanogr.
43
,
1426
1438
(
2013
).
48.
G.
Haller
and
F. J.
Beron-Vera
, “
Coherent Lagrangian vortices: The black holes of turbulence
,”
J. Fluid Mech.
731
,
R4
(
2013
).
49.
F. J.
Beron-Vera
,
M. J.
Olascaoaga
,
Y.
Wang
,
J.
Triñanes
, and
P.
Pérez-Brunius
, “
Enduring Lagrangian coherence of a Loop Current ring assessed using independent observations
,”
Sci. Rep.
8
,
11275
(
2018
).
50.
F. J.
Beron-Vera
,
A.
Hadjighasem
,
Q.
Xia
,
M. J.
Olascoaga
, and
G.
Haller
, “
Coherent Lagrangian swirls among submesoscale motions
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
18251
18256
(
2018
).
51.
M.
van der Mheen
,
C.
Pattiaratchi
, and
E.
van Sebille
, “
Role of Indian Ocean dynamics on accumulation of buoyant debris
,”
J. Geophys. Res.: Oceans
124
,
2571
2590
, (
2019
).
52.
F. J.
Beron-Vera
,
M. J.
Olascoaga
, and
P.
Miron
, “
Corrigendum and addendum to “building a Maxey–Riley framework for surface ocean inertial particle dynamics
,”” (unpublished).
53.
P.
Ripa
, “
Least squares data fitting
,”
Cienc. Mar.
28
,
75
105
(
2002
).
54.
J. R.
Dormand
and
P. J.
Prince
, “
A family of embedded Runge–Kutta formulae
,”
J. Comput. Appl. Math.
6
,
19
26
(
1980
).
55.
P. P.
Niiler
,
R. E.
Davis
, and
H. J.
White
, “
Water-following characteristics of a mixed layer drifter
,”
Deep-Sea Res., Part A
34
,
1867
1881
(
1987
).
56.
G.
Haller
, “
Lagrangian coherent structures from approximate velocity data
,”
Phys. Fluids
14
,
1851
1861
(
2002
).
57.
R. T.
Rockafellar
and
R. J.
Wets
,
Variational Analysis
(
Springer-Verlag
,
2005
), p.
117
.
58.
P.
Miron
,
M. J.
Olascoaga
,
F. J.
Beron-Vera
,
J. T.
Triñanes
,
N. F.
Putman
,
R.
Lumpkin
, and
G. J.
Goni
, “
Assessing inertial effects in the ocean using custom drifters
,” (unpublished).
You do not currently have access to this content.