The microscopic-scale Richtmyer–Meshkov instability (RMI) of a single-mode dense-gas interface is studied by the molecular dynamics approach. Physically realistic evolution processes involving the non-equilibrium effects such as diffusion, dissipation, and thermal conduction are examined for different shock strengths. Different dependence of the perturbation growth on the shock strength is found for the first time. Specifically, the amplitude growths for cases with relatively lower shock Mach numbers (Ma = 1.9, 2.4, 2.9) exhibit an evident discrepancy from a very early stage, whereas for cases with higher Mach numbers (Ma = 4.9, 9.0, 16.0), their amplitude variations with time match quite well during the whole simulation time. Such different behaviors are ascribed to the viscosity effect that plays a crucial role in the microscale RMI. The compressible linear theory of Yang et al. [“Small amplitude theory of Richtmyer–Meshkov instability,” Phys. Fluids 6(5), 1856–1873 (1994)] accounting for the viscosity dissipation provides a reasonable prediction of the simulated linear growth rate. Furthermore, a modified compressible nonlinear model [Q. Zhang et al., “Quantitative theory for the growth rate and amplitude of the compressible Richtmyer–Meshkov instability at all density ratios,” Phys. Rev. Lett. 121, 174502 (2018)] considering both the viscosity effect and the corrected linear growth rate is proposed, which gives an excellent forecast of the linear and nonlinear growths of the present microscale RMI.

1.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
319
(
1960
).
2.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
104
(
1969
).
3.
J.
Lindl
,
O.
Landen
,
J.
Edwards
,
E.
Moses
, and
N.
Team
, “
Review of the national ignition campaign 2009-2012
,”
Phys. Plasmas
21
,
020501
(
2014
).
4.
C. C.
Kuranz
,
H. S.
Park
,
C. M.
Huntington
,
A. R.
Miles
,
B. A.
Remington
,
T.
Plewa
,
M. R.
Trantham
,
H. F.
Robey
,
D.
Shvarts
,
A.
Shimony
 et al, “
How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants
,”
Nat. Commun.
9
,
1564
(
2018
).
5.
J. G.
Wouchuk
, “
Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected
,”
Phys. Rev. E
63
,
056303
(
2001
).
6.
X.
Luo
,
X.
Wang
, and
T.
Si
, “
The Richtmyer-Meshkov instability of a three-dimensional air/SF6 interface with a minimum-surface feature
,”
J. Fluid Mech.
722
,
R2
(
2013
).
7.
Q.
Zhang
and
S. I.
Sohn
, “
Nonlinear theory of unstable fluid mixing driven by shock wave
,”
Phys. Fluids
9
,
1106
1124
(
1997
).
8.
O.
Sadot
,
L.
Erez
,
U.
Alon
,
D.
Oron
,
L. A.
Levin
,
G.
Erez
,
G.
Ben-Dor
, and
D.
Shvarts
, “
Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability
,”
Phys. Rev. Lett.
80
,
1654
1657
(
1998
).
9.
G.
Dimonte
and
P.
Ramaprabhu
, “
Simulations and model of the nonlinear Richtmyer-Meshkov instability
,”
Phys. Fluids
22
,
014104
(
2010
).
10.
Q.
Zhang
,
S.
Deng
, and
W.
Guo
, “
Quantitative theory for the growth rate and amplitude of the compressible Richtmyer-Meshkov instability at all density ratios
,”
Phys. Rev. Lett.
121
,
174502
(
2018
).
11.
L.
Liu
,
Y.
Liang
,
J.
Ding
,
N.
Liu
, and
X.
Luo
, “
An elaborate experiment on the single-mode Richtmyer-Meshkov instability
,”
J. Fluid Mech.
853
,
R2
(
2018
).
12.
J. R.
Fincke
,
N. E.
Lanier
,
S. H.
Batha
,
R. M.
Hueckstaedt
,
G. R.
Magelssen
,
S. D.
Rothman
,
K. W.
Parker
, and
C. J.
Horsfield
, “
Postponement of saturation of the Richtmyer-Meshkov instability in a convergent geometry
,”
Phys. Rev. Lett.
93
,
115003
(
2004
).
13.
J. R.
Fincke
,
N. E.
Lanier
,
S. H.
Batha
,
R. M.
Hueckstaedt
,
G. R.
Magelssen
,
S. D.
Rothman
,
K. W.
Parker
, and
C. J.
Horsfield
, “
Effect of convergence on growth of the Richtmyer-Meshkov instability
,”
Laser Part. Beams
23
(
01
),
21
25
(
2005
).
14.
H.
Lai
,
A.
Xu
,
G.
Zhang
,
Y.
Gan
,
Y.
Ying
, and
S.
Succi
, “
Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows
,”
Phys. Rev. E
94
,
023106
(
2016
).
15.
V. V.
Zhakhovskii
,
S. V.
Zybin
,
S. I.
Abarzhi
, and
K.
Nishihara
, “
Atomistic dynamics of Richtmyer-Meshkov instability in cylindrical and planar geometries
,”
AIP Conf. Proc.
845
,
433
436
(
2006
).
16.
S. V.
Zybin
,
V. V.
Zhakhovskii
,
E. M.
Bringa
,
S. I.
Abarzhi
, and
B.
Remington
, “
Molecular dynamics simulations of the Richtmyer-Meshkov instability in shock loaded solids
,”
AIP Conf. Proc.
845
,
437
441
(
2006
).
17.
T. C.
Germann
,
G.
Dimonte
,
J. E.
Hammerberg
,
K.
Kadau
,
J.
Quenneville
, and
M. B.
Zellner
, “
Large-scale molecular dynamics simulations of particulate ejection and Richtmyer-Meshkov instability development in shocked copper
,”
EDP Sci.
2
,
1499
1505
(
2009
).
18.
H.
Liu
,
W.
Kang
,
Q.
Zhang
,
Y.
Zhang
,
H.
Duan
, and
X. T.
He
, “
Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium
,”
Front. Phys.
11
,
115206
(
2016
).
19.
S.
Huang
,
W.
Wang
, and
X.
Luo
, “
Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interface at extreme compressing conditions
,”
Phys. Plasmas
25
,
062705
(
2018
).
20.
F. J.
Cherne
,
J. E.
Hammerberg
,
M. J.
Andrews
,
V.
Karkhanis
, and
P.
Ramaprabhu
, “
On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum
,”
J. Appl. Phys.
118
,
185901
(
2015
).
21.
G.
Dimonte
,
G.
Terrones
,
F. J.
Cherne
, and
P.
Ramaprabhu
, “
Ejecta source model based on the nonlinear Richtmyer-Meshkov instability
,”
J. Appl. Phys.
113
,
024905
(
2013
).
22.
J. L.
Barber
,
K.
Kadau
,
T. C.
Germann
, and
B. J.
Alder
, “
Simulation of fluid instabilities using atomistic methods
,”
AIP Conf. Proc.
955
,
301
304
(
2007
).
23.
M. A.
Gallis
,
T. P.
Koehler
,
J. R.
Torczynski
, and
S. J.
Plimpton
, “
Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability
,”
Phys. Fluids
27
,
084105
(
2015
).
24.
M.
Brouillette
, “
The Richtmyer-Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
,
445
468
(
2002
).
25.
D.
Ranjan
,
J.
Oakley
, and
R.
Bonazza
, “
Shock-bubble interactions
,”
Annu. Rev. Fluid Mech.
43
,
117
140
(
2011
).
26.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720-722
,
1
136
(
2017
).
27.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
28.
B.
Li
,
L.
Wang
,
J. C.
E
,
H. H.
Ma
, and
S. N.
Luo
, “
Shock response of He bubbles in single crystal Cu
,”
J. Appl. Phys.
116
,
213506
(
2014
).
29.
Z.
Wu
,
S.
Huang
,
J.
Ding
,
W.
Wang
, and
X.
Luo
, “
Molecular dynamics simulation of cylindrical Richtmyer-Meshkov instability
,”
Sci. China Phys., Mech. Astron.
61
,
114712
(
2018
).
30.
O.
Talu
and
A. L.
Myers
, “
Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites
,”
Colloids Surf., A
187
,
83
(
2001
).
31.
M.
Schoen
,
R.
Vogelsang
, and
C.
Hoheise
, “
Computation and analysis of the dynamic structure factor S(k, ω) for small wave vectors
,”
Mol. Phys.
57
,
445
471
(
1986
).
32.
J. W.
Jacobs
and
V. V.
Krivets
, “
Experiments on the late-time development of single-mode Richtmyer-Meshkov instability
,”
Phys. Fluids
17
,
034105
(
2005
).
33.
C.
Mariani
,
M.
Vandenboomgaerde
,
G.
Jourdan
,
D.
Souffland
, and
L.
Houas
, “
Investigation of the Richtmyer-Meshkov instability with stereolithographed interfaces
,”
Phys. Rev. Lett.
100
,
254503
(
2008
).
34.
O.
Schilling
,
M.
Latini
, and
W. S.
Don
, “
Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability
,”
Phys. Rev. E
76
,
026319
(
2007
).
35.
P.
Movahed
and
E.
Johnsen
, “
A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability
,”
J. Comput. Phys.
239
,
166
186
(
2013
).
36.
O.
Sadot
,
A.
Rikanati
,
D.
Oron
,
G.
Ben-Dor
, and
D.
Shvarts
, “
An experimental study of the high Mach number and high initial-amplitude effects on the evolution of the single-mode Richtmyer-Meshkov instability
,”
Laser Part. Beams
21
,
341
346
(
2003
).
37.
J. A.
Aguilera
and
C.
Aragón
, “
A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure
,”
Appl. Phys. A
69
,
S475
S478
(
1999
).
38.
Q.
Zhang
and
M. J.
Graham
, “
Scaling laws for unstable interfaces driven by strong shocks in cylindrical geometry
,”
Phys. Rev. Lett.
79
,
2674
2677
(
1997
).
39.
D.
Ranjan
,
J.
Niederhaus
,
B.
Motl
,
M.
Anderson
,
J.
Oakley
, and
R.
Bonazza
, “
Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction
,”
Phys. Rev. Lett.
98
,
024502
(
2007
).
40.
G. C.
Orlicz
,
S.
Balasubramanian
, and
K. P.
Prestridge
, “
Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer
,”
Phys. Fluids
25
,
114101
(
2013
).
41.
Y.
Yang
,
Q.
Zhang
, and
D. H.
Sharp
, “
Small amplitude theory of Richtmyer-Meshkov instability
,”
Phys. Fluids
6
(
5
),
1856
1873
(
1994
).
42.
P.
Carlès
and
S.
Popinet
, “
Viscous nonlinear theory of Richtmyer-Meshkov instability
,”
Phys. Fluids
13
,
1833
(
2001
).
43.
K. O.
Mikaelian
, “
Comment on “The effect of viscosity, surface tension and non-linearity on Richtmyer–Meshkov instability” [Eur. J. Mech. B Fluids 21 (2002) 511–526]
,”
Eur. J. Mech. B: Fluids
43
,
183
184
(
2014
).
44.
R.
Samtaney
and
N. J.
Zabusky
, “
Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: Models and scaling laws
,”
J. Fluid Mech.
269
,
45
78
(
1994
).
45.
R.
Samtaney
,
J.
Ray
, and
N. J.
Zabusky
, “
Baroclinic circulation generation on shock accelerated slow/fast gas interfaces
,”
Phys. Fluids
10
,
1217
1230
(
1998
).
46.
B.
Walchli
and
B.
Thornber
, “
Reynolds number effects on the single-mode Richtmyer-Meshkov instability
,”
Phys. Rev. E
95
,
013104
(
2017
).
47.
K. O.
Mikaelian
, “
Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities
,”
Phys. Rev. E
47
,
375
383
(
1993
).
48.
R.
Samtaney
and
D. I.
Meiron
, “
Hypervelocity Richtmyer–Meshkov instability
,”
Phys. Fluids
9
,
1783
(
1997
).
49.
J. F.
Hansen
,
H. F.
Robey
,
R. I.
Klein
, and
A. R.
Miles
, “
Experiment on the mass-stripping of an interstellar cloud in a high Mach number post-shock flow
,”
Phys. Plasmas
14
(
5
),
056505
(
2007
).
50.
J.
Ding
,
T.
Si
,
J.
Yang
,
X.
Lu
,
Z.
Zhai
, and
X.
Luo
, “
Measurement of a Richtmyer-Meshkov instability at an air-SF6 interface in a semiannular shock tube
,”
Phys. Rev. Lett.
119
,
014501
(
2017
).
You do not currently have access to this content.