The paper presents a linear stability analysis of the temperature-dependent boundary-layer flow over a rotating disk. Gas- and liquid-type responses of the viscosity to temperature are considered, and the disk rotates in both a quiescent and an incident axial flow. Temperature-dependent-viscosity flows are typically found to be less stable than the temperature independent cases, with temperature dependences that produce high wall viscosities yielding the least stable flows. Conversely, increasing the incident axial flow strength produces greater flow stability. Transitional Reynolds numbers for these flows are then approximated through an eN-type analysis and are found to vary in approximate concordance with the critical Reynolds number. Examination of the component energy contributions shows that flow stability is affected exclusively through changes to the mean flow. The results are discussed in the context of chemical vapor deposition reactors.

1.
W.
Tollmien
, “
Über die entstehung der turbulenz
,”
Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl
II
,
21
44
(
1929
).
2.
H.
Schlichting
, “
Laminare strahlausbreitung
,”
Z. Angew. Math. Mech.
13
(
4
),
260
263
(
1933
).
3.
N.
Gregory
,
J. T.
Stuart
, and
W. S.
Walker
, “
On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk
,”
Philos. Trans. R. Soc. London
248
(
943
),
155
199
(
1955
).
4.
T.
von Kármán
, “
Uber laminare und turbulente reibung
,”
Z. Angew. Math. Mech.
1
(
4
),
233
252
(
1921
).
5.
W. E.
Gray
, “
The nature of the boundary layer flow at the nose of a swept wing
,” RAE TM Aero. 256,
1952
.
6.
M. R.
Malik
, “
The neutral curve for stationary disturbances in rotating-disk flow
,”
J. Fluid Mech.
164
,
275
287
(
1986
).
7.
P.
Hall
, “
An asymptotic investigation of the stationary modes of instability of the boundary layer on a rotating disc
,”
Proc. R. Soc. London, Ser. A
406
(
1830
),
93
106
(
1986
).
8.
Z.
Hussain
,
S. J.
Garrett
, and
S. O.
Stephen
, “
The instability of the boundary layer over a disk rotating in an enforced axial flow
,”
Phys. Fluids
23
(
11
),
114108
(
2011
).
9.
B. I.
Fedorov
,
G. Z.
Plavnik
,
I. V.
Prokhorov
, and
L. G.
Zhukhovitskii
, “
Transitional flow conditions on a rotating disk
,”
J. Eng. Phys. Thermophys.
31
(
6
),
1448
1453
(
1976
).
10.
R. J.
Lingwood
, “
An experimental study of absolute instability of the rotating-disk boundary-layer flow
,”
J. Fluid Mech.
314
,
373
405
(
1996
).
11.
T. C.
Corke
and
K. F.
Knasiak
, “
Stationary travelling cross-flow mode interactions on a rotating disk
,”
J. Fluid Mech.
355
,
285
315
(
1998
).
12.
R.
Miller
,
S. J.
Garrett
,
P. T.
Griffiths
, and
Z.
Hussain
, “
Stability of the Blasius boundary layer over a heated plate in a temperature-dependent viscosity flow
,”
Phys. Rev. Fluids
3
,
113902
(
2018
).
13.
J. L.
van Ingen
, “
A suggested semi-empirical method for the calculation of the boundary layer transition region
,” Technical Report (
Delft University of Technology
,
1956
).
14.
J. L.
van Ingen
, “
The eN method for transition prediction historical review of work at TU delft
,” in
Proceedings of the 38th AIAA Fluid Dynamics Conference and Exhibit, Seattle, Washington, 23-26 June 2008
(
AIAA
,
2008
), p.
1
49
.
15.
F. P.
Bertolotti
,
Th.
Herbert
, and
P. R.
Spalart
, “
Linear and nonlinear stability of the Blasius boundary layer
,”
J. Fluid Mech.
242
,
441
474
(
1992
).
16.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
(
1
),
473
537
(
1990
).
17.
J.
Chomaz
, “
Global instabilities in spatially developing flows: Non-normality and nonlinearity
,”
Annu. Rev. Fluid. Mech.
37
,
357
392
(
2005
).
18.
R. J.
Lingwoodan
, “
Stability and transition of the boundary layer on a rotating disk
,” Ph.D. thesis,
University of Cambridge
,
1995
.
19.
J. J.
Healey
, “
On the relation between the viscous and inviscid absolute instabilities of the rotating-disk boundary layer
,”
J. Fluid Mech.
511
,
179
199
(
2004
).
20.
C.
Cossu
,
J.
Chomaz
, and
D. S.
Henningson
, “
2D nonlinear front propagation in the Blasius boundary layer
,” in
APS Division of Fluid Dynamics Meeting Abstracts
(
APS
,
2001
), Vol. 54.
21.
R. J.
Lingwood
and
P. H.
Alfredsson
, “
Instabilities of the von Kármán boundary layer
,”
Appl. Mech. Rev.
67
(
3
),
030803
(
2015
).
22.
J. X.
Ling
and
A.
Dybbs
, “
The effect of variable viscosity on forced convection over a flat plate submersed in a porous medium
,”
J. Heat Transfer
114
(
4
),
1063
1065
(
1992
).
23.
N. G.
Kafoussias
and
E. W.
Williams
, “
The effect of temperature-dependent viscosity on free-forced convective laminar boundary layer flow past a vertical isothermal flat plate
,”
Acta Mech.
110
(
1
),
123
137
(
1995
).
24.
D. P.
Wall
and
S. K.
Wilson
, “
The linear stability of flat-plate boundary-layer flow of fluid with temperature-dependent viscosity
,”
Phys. Fluids
9
(
10
),
2885
2898
(
1997
).
25.
H. A.
Jasmine
and
J. S. B.
Gajjar
, “
Absolute and convective instabilities in the incompressible boundary layer on a rotating disk with temperature-dependent viscosity
,”
Int. J. Heat Mass Transfer
48
(
5
),
1022
1037
(
2005
).
26.
K.
Chen
and
A. R.
Mortazavi
, “
An analytical study of the chemical vapor deposition (CVD) processes in a rotating pedestal reactor
,”
J. Cryst. Growth
76
(
1
),
199
208
(
1986
).
27.
S. J.
Garrett
,
Z.
Hussain
, and
S. O.
Stephen
, “
Boundary-layer transition on broad cones rotating in an imposed axial flow
,”
AIAA J.
48
(
6
),
1184
1194
(
2010
).
28.
J. R.
Lloyd
and
E. M.
Sparrow
, “
On the instability of natural convection flow on inclined plates
,”
J. Fluid Mech.
42
(
3
),
465
470
(
1970
).
29.
W. L.
Holstein
, “
Design and modeling of chemical vapor deposition reactors
,”
Prog. Cryst. Growth Charact. Mater.
24
(
2
),
111
211
(
1992
).
30.
K. F.
Jensen
,
E. O.
Einset
, and
D. I.
Fotiadis
, “
Flow phenomena in chemical vapor deposition of thin films
,”
Annu. Rev. Fluid Mech.
23
(
1
),
197
232
(
1991
).
31.
C. R.
Kleijn
, “
On the modelling of transport phenomena in chemical vapour deposition and its use in reactor design and process optimization
,”
Thin Solid Films
206
(
1-2
),
47
53
(
1991
).
32.
B.
Alveroğlu
, “
The convective instability of the BEK system of rotating boundary-layer flows over rough disks
,” Ph.D. thesis,
University of Leicester
,
2016
.
33.
A. J.
Cooper
and
P. W.
Carpenter
, “
The stability of rotating-disc boundary-layer flow over a compliant wall. Part 1. Type I and II instabilities
,”
J. Fluid Mech.
350
,
231
259
(
1997
).
34.
M. R.
Malik
,
S. P.
Wilkinson
, and
S. A.
Orszag
, “
Instability and transition in rotating disk flow
,”
AIAA J.
19
(
9
),
1131
1138
(
1981
).
35.
S. P.
Wilkinson
and
M. R.
Malik
, “
Stability experiments in the flow over a rotating disk
,”
AIAA J.
23
(
4
),
588
595
(
1985
).
You do not currently have access to this content.