The orientational dynamics of inertialess anisotropic particles transported by two-dimensional convective turbulent flows display a coexistence of regular and chaotic features. We numerically demonstrate that very elongated particles (rods) align preferentially with the direction of the fluid flow, i.e., horizontally close to the isothermal walls and dominantly vertically in the bulk. This behavior is due to the presence of a persistent large scale circulation flow structure, which induces strong shear at wall boundaries and in up/down-welling regions. The near-wall horizontal alignment of rods persists at increasing the Rayleigh number, while the vertical orientation in the bulk is progressively weakened by the corresponding increase in turbulence intensity. Furthermore, we show that very elongated particles are nearly orthogonal to the orientation of the temperature gradient, an alignment independent of the system dimensionality and which becomes exact only in the limit of infinite Prandtl numbers. Tumbling rates are extremely vigorous adjacent to the walls, where particles roughly perform Jeffery orbits. This implies that the root-mean-square near-wall tumbling rates for spheres are much stronger than for rods, up to O(10) times at Ra ≃ 109. In the turbulent bulk, the situation reverses and the rods tumble slightly faster than isotropic particles, in agreement with earlier observations in two-dimensional turbulence.

1.
G. A.
Voth
and
A.
Soldati
, “
Anisotropic particles in turbulence
,”
Annu. Rev. Fluid Mech.
49
,
249
276
(
2017
).
2.
S.
Parsa
,
E.
Calzavarini
,
F.
Toschi
, and
G. A.
Voth
, “
Rotation rate of rods in turbulent fluid flow
,”
Phys. Rev. Lett.
109
,
134501
(
2012
).
3.
S.
Parsa
and
G. A.
Voth
, “
Inertial range scaling in rotations of long rods in turbulence
,”
Phys. Rev. Lett.
112
,
024501
(
2014
).
4.
G. G.
Marcus
,
S.
Parsa
,
S.
Kramel
,
R.
Ni
, and
G. A.
Voth
, “
Measurements of the solid-body rotation of anisotropic particles in 3D turbulence
,”
New J. Phys.
16
,
102001
(
2014
).
5.
M.
Byron
,
J.
Einarsson
,
K.
Gustavsson
,
G.
Voth
,
B.
Mehlig
, and
E.
Variano
, “
Shape-dependence of particle rotation in isotropic turbulence
,”
Phys. Fluids
27
,
035101
(
2015
).
6.
R.
Ni
,
S.
Kramel
,
N. T.
Ouellette
, and
G. A.
Voth
, “
Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence
,”
J. Fluid Mech.
766
,
202
225
(
2015
).
7.
S.
Bounoua
,
G.
Bouchet
, and
G.
Verhille
, “
Tumbling of inertial fibers in turbulence
,”
Phys. Rev. Lett.
121
,
124502
(
2018
).
8.
L.
Chevillard
and
C.
Meneveau
, “
Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence
,”
J. Fluid Mech.
737
,
571
596
(
2013
).
9.
K.
Gustavsson
,
J.
Einarsson
, and
B.
Mehlig
, “
Tumbling of small axisymmetric particles in random and turbulent flows
,”
Phys. Rev. Lett.
112
,
014501
(
2014
).
10.
R.
Ni
,
N. T.
Ouellette
, and
G. A.
Voth
, “
Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence
,”
J. Fluid Mech.
743
,
R3
(
2014
).
11.
F.
Candelier
,
J.
Einarsson
, and
B.
Mehlig
, “
Angular dynamics of a small particle in turbulence
,”
Phys. Rev. Lett.
117
,
204501
(
2016
).
12.
N.
Pujara
and
E. A.
Variano
, “
Rotations of small, inertialess triaxial ellipsoids in isotropic turbulence
,”
J. Fluid Mech.
821
,
517
538
(
2017
).
13.
K.
Gustavsson
,
J.
Jucha
,
A.
Naso
,
E.
Lévêque
,
A.
Pumir
, and
B.
Mehlig
, “
Statistical model for the orientation of nonspherical particles settling in turbulence
,”
Phys. Rev. Lett.
119
,
254501
(
2017
).
14.
J.
Lin
,
X.
Shi
, and
Z.
Yu
, “
The motion of fibers in an evolving mixing layer
,”
Int. J. Multiphase Flow
29
,
1355
1372
(
2003
).
15.
J. Z.
Lin
,
X. Y.
Liang
, and
S. L.
Zhang
, “
Numerical simulation of fiber orientation distribution in round turbulent jet of fiber suspension
,”
Chem. Eng. Res. Des.
90
,
766
775
(
2012
), special issue on the 3rd European Process Intensification Conference.
16.
L.-X.
Zhang
,
J.-Z.
Lin
, and
T. L.
Chan
, “
Orientation distribution of cylindrical particles suspended in a turbulent pipe flow
,”
Phys. Fluids
17
,
093105
(
2005
).
17.
C.
Marchioli
,
M.
Fantoni
, and
A.
Soldati
, “
Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow
,”
Phys. Fluids
22
,
033301
(
2010
).
18.
C.
Marchioli
and
A.
Soldati
, “
Rotation statistics of fibers in wall shear turbulence
,”
Acta Mech.
224
,
2311
2329
(
2013
).
19.
L.
Zhao
,
N. R.
Challabotla
,
H. I.
Andersson
, and
E. A.
Variano
, “
Rotation of non-spherical particles in turbulent channel flow
,”
Phys. Rev. Lett.
115
,
244501
(
2015
).
20.
N. R.
Challabotla
,
L.
Zhao
, and
H. I.
Andersson
, “
Orientation and rotation of inertial disk particles in wall turbulence
,”
J. Fluid Mech.
766
,
R2
(
2015
).
21.
D.
Bakhuis
,
V.
Mathai
,
R. A.
Verschoof
,
R.
Ezeta
,
D.
Lohse
,
S. G.
Huisman
, and
C.
Sun
, “
Statistics of rigid fibers in strongly sheared turbulence
,”
Phys. Rev. Fluids
4
,
072301(R)
(
2019
).
22.
S.
Parsa
,
J. S.
Guasto
,
M.
Kishore
,
N. T.
Ouellette
,
J. P.
Gollub
, and
G. A.
Voth
, “
Rotation and alignment of rods in two-dimensional chaotic flow
,”
Phys. Fluids
23
,
043302
(
2011
).
23.
A.
Gupta
,
D.
Vincenzi
, and
R.
Pandit
, “
Elliptical tracers in two-dimensional, homogeneous, isotropic fluid turbulence: The statistics of alignment, rotation, and nematic order
,”
Phys. Rev. E
89
,
021001
(
2014
).
24.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
102
,
161
179
(
1922
).
25.
E.
Calzavarini
, “
Eulerian-Lagrangian fluid dynamics platform: The ch4-project
,”
Software Impacts
1
,
100002
(
2019
).
26.
L.
Zhao
,
K.
Gustavsson
,
R.
Ni
,
S.
Kramel
,
G. A.
Voth
,
H. I.
Andersson
, and
B.
Mehlig
, “
Passive directors in turbulence
,”
Phys. Rev. Fluids
4
,
054602
(
2019
).
27.
A.
Pumir
and
M.
Wilkinson
, “
Orientation statistics of small particles in turbulence
,”
New J. Phys.
13
,
093030
(
2011
).
28.
A.
Pumir
, “
Structure of the velocity gradient tensor in turbulent shear flows
,”
Phys. Rev. Fluids
2
,
074602
(
2017
).

Supplementary Material

You do not currently have access to this content.