A rheological constitutive model is required to characterize the behavior of a nitrocellulose-based material used as a binder in polymer bonded explosives. The behavior of the binder is extremely important as it heavily influences the mechanical response of the polymer composite; this is due to the binder having stiffness five orders of magnitude lower than the stiffness of the explosive crystals. Determination of the material model parameters is not straightforward; a constitutive law that will capture the pronounced time-dependent, temperature-dependent, and highly non-linear, large deformation response of this material is required. In this study, the material properties of the binder are determined using constant shear strain rate, shear stress relaxation, and monotonic tensile test results obtained over a wide range of temperature and strain rates. A visco-hyperelastic model is parameterized using the derived test data. In addition, recommendations are made regarding accurate data derived from rheological testing on such materials falling in the soft solid rather than the complex fluid domain.

1.
M. S.
Ozer
,
H.
Koruk
, and
K. Y.
Sanliturk
, “
Characterization of viscoelastic materials using free-layered and sandwiched samples: Assessment and recommendations
,” in
Proceedings of the 4th International Congress, APMAS2014 April 24-27, 2014 Fethiye, Turkey
[
Acta Phys. Pol., A
127
,
1251
(
2015
)].
2.
L.
Bradley
, “
Application of the enhanced Mori-Tanaka model to insensitive high explosive mechanical properties
,” M.Sc. thesis,
Defence College of Management and Technology, Cranfield University
,
Cranfield
,
2011
.
3.
S. M. F. D.
Syed Mustapha
,
T. N.
Phillips
, and
C. J.
Price
, “
Towards the characterization of viscoelastic materials using model-based reasoning techniques
,” in
11th International Workshop of Qualitative Reasoning
(
Centre National de la Recherche Scientifique
,
1997
), pp.
297
303
.
4.
C. G.
Skamniotis
,
M.
Elliott
, and
M. N.
Charalambides
, “
On modeling the large strain fracture behaviour of soft viscous foods
,”
Phys. Fluids
29
(
12
),
121610
(
2017
).
5.
D. R.
Drodge
 et al, “
The mechanical response of a PBX and binder: Combining results across the strain-rate and frequency domains
,”
J. Phys. D: Appl. Phys.
43
(
33
),
335403
(
2010
).
6.
P.
Rae
 et al, “
Quasi–static studies of the deformation and failure of β–HMX based polymer bonded explosives
,”
Proc. R. Soc. London, Ser. A
458
(
2019
),
743
762
(
2002
).
7.
D.
Kim
 et al, “
Effect of a polymer binder on the extraction and crystallization-based recovery of HMX from polymer-bonded explosives
,”
J. Ind. Eng. Chem.
79
,
124
130
(
2019
).
8.
H.
Arora
 et al, “
Modelling the damage and deformation process in a plastic bonded explosive microstructure under tension using the finite element method
,”
Comput. Mater. Sci.
110
,
91
101
(
2015
).
9.
M.
Rodigan
, “
Fracture properties as a function of temperature of a polymer bonded explosive
,” M.Sc. thesis,
Faculty of Engineering and Physical Sciences University of Surrey
,
Surrey
,
2011
.
10.
X. F.
Ma
 et al, “
Simulative calculation of mechanical property, binding energy and detonation property of TATB/fluorine-polymer PBX
,”
Chin. J. Chem.
24
(
4
),
473
477
(
2006
).
11.
H.
Tan
 et al, “
The cohesive law for the particle/matrix interfaces in high explosives
,”
J. Mech. Phys. Solids
53
(
8
),
1892
1917
(
2005
).
12.
H.
Tan
 et al, “
The Mori-Tanaka method for composite materials with nonlinear interface debonding
,”
Int. J. Plast.
21
(
10
),
1890
1918
(
2005
).
13.
S. Y.
Fu
 et al, “
Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites
,”
Composites, Part B
39
(
6
),
933
961
(
2008
).
14.
L. L.
Mishnaevsky
, Jr.
, “
Three-dimensional numerical testing of microstructures of particle reinforced composites
,”
Acta Mater.
52
(
14
),
4177
4188
(
2004
).
15.
D. A.
Wiegand
and
J. J.
Pinto
, “
The composition of polymer composite fracture surfaces as studied by Xps
,”
MRS Proc.
409
,
281
(
2011
).
16.
M. A. P.
Mohammed
, “
Mechanical characterisation, processing and microstructure of wheat flour dough
, Ph.D. thesis,
Imperial College of Science, Technology and Medicine
,
London
,
2012
.
17.
M. A. P.
Mohammed
 et al, “
Mechanical characterization and micromechanical modeling of bread dough
,”
J. Rheol.
57
(
1
),
249
272
(
2013
).
18.
O. A.
Stapountzi
, “
Stiffness and fracture properties of alumina trihydrate filled poly (methyl methacrylate) composites
,” Ph.D. thesis,
Imperial College of Science, Technology and Medicine
,
London
,
2008
.
19.
O. A.
Stapountzi
,
M. N.
Charalambides
, and
J. G.
Williams
, “
Micromechanical models for stiffness prediction of alumina trihydrate (ATH) reinforced poly (methyl methacrylate) (PMMA): Effect of filler volume fraction and temperature
,”
Compos. Sci. Technol.
69
(
11-12
),
2015
2023
(
2009
).
20.
C.
Skamniotis
, “
Characterising and modelling fracture in functional pet foods
,” Ph.D. thesis,
Imperial College of Science, Technology and Medicine
,
London
,
2017
.
21.
E. W. S.
Hagan
, “
The viscoelastic properties of latex artist paints
,” Ph.D. thesis,
Imperial College of Science, Technology and Medicine
,
London
,
2009
.
22.
J. G.
Williams
,
Stress Analysis of Polymers
(
John Wiley
,
London
,
1980
).
23.
R.
Zhang
, “
Experimental and numerical investigation of structural-mechanical property relationships in alumina trihydrate reinforced poly (methyl metahcrylate) composites
,” Ph.D. thesis,
Imperial College of Science, Technology and Medicine
,
London
,
2017
.
24.
H.
Tan
 et al, “
The uniaxial tension of particulate composite materials with nonlinear interface debonding
,”
Int. J. Solids Struct.
44
(
6
),
1809
1822
(
2007
).
25.
Q. B.
Luo
 et al, “
The thermal properties of nitrocellulose: From thermal decomposition to thermal explosion
,”
Combust. Sci. Technol.
190
(
4
),
579
590
(
2018
).
26.
R. C.
Warren
, “
Transitions and relaxations in plasticised nitrocellulose
,”
Polymer
29
(
5
),
919
923
(
1988
).
27.
T.
Lindblom
, “
Reactions in the system nitro-cellulose/diphenylamine with special reference to the formation of a stabilizing product bonded to nitro-cellulose
,” Ph.D. thesis,
Faculty of Science and Technology, Acta Universitatis Upsaliensis
,
Uppsala
,
2004
.
28.
F.
Volk
, “
Determining the shelflife of solid propellants
,”
Propellants, Explos., Pyrotech.
1
(
3
),
59
65
(
1976
).
29.
V. P.
Verneker
,
K.
Kishore
, and
C.
Subhas
, “
Mechanism of thermal decomposition of double base propellants
,”
Propellants, Explos., Pyrotech.
8
(
3
),
77
79
(
1983
).
30.
N.
Phan-Thien
and
M.
Safari-Ardi
, “
Linear viscoelastic properties of flour-water doughs at different water concentrations
,”
J. Non-Newtonian Fluid Mech.
74
(
1-3
),
137
150
(
1998
).
31.
T. S. K.
Ng
and
G. H.
McKinley
, “
Power law gels at finite strains: The nonlinear rheology of gluten gels
,”
J. Rheol.
52
(
2
),
417
449
(
2008
).
32.
M. L.
Williams
,
R. F.
Landel
, and
J. D.
Ferry
, “
The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids
,”
J. Am. Chem. Soc.
77
(
14
),
3701
3707
(
1955
).
33.
S. M.
Goh
,
M. N.
Charalambides
, and
J. G.
Williams
, “
Determination of the constitutive constants of non-linear viscoelastic materials
,”
Mech. Time-Depend. Mater.
8
(
3
),
255
268
(
2004
).
34.
O. A.
Stapountzi
,
M. N.
Charalambides
, and
J. G.
Williams
, “
The fracture toughness of a highly filled polymer composite
,” in
Recent Advances in Mechanics: Selected Papers from the Symposium on Recent Advances in Mechanics, Academy of Athens, Athens, Greece, 17-19 September, 2009
, edited by
A. N.
Kounadis
and
E. E.
Gdoutos
(
Springer Netherlands
,
Dordrecht
,
2011
), pp.
447
459
, Organised by the Pericles S. Theocaris Foundation in Honour of P.S. Theocaris, on the Tenth Anniversary of His Death.
35.
H.
Leaderman
, “
Viscoelasticity phenomena in amorphous high polymeric systems
,” in
Rheology
(
Elsevier
,
1958
), pp.
1
61
.
36.
L. R. G.
Treloar
,
The Physics of Rubber Elasticity
(
Clarendon Press
,
Oxford
,
1975
).
37.
Abaqus, Users Manual, Dassault Systèmes,
Vélizy-Villacoublay
,
France
,
2019
.
38.
R. L.
Taylor
,
K. S.
Pister
, and
G. L.
Goudreau
, “
Thermomechanical analysis of viscoelastic solids
,”
Int. J. Numer. Methods Eng.
2
(
1
),
45
59
(
1970
).
39.
M.
Kaliske
and
H.
Rothert
, “
Formulation and implementation of three-dimensional viscoelasticity at small and finite strains
,”
Comput. Mech.
19
(
3
),
228
239
(
1997
).
40.
J. F.
Steffe
,
Rheological Methods in Food Process Engineering
(
Freeman Press
,
East Lansing
,
1996
).
41.
N.
Phan-Thien
,
M.
Newberry
, and
R. I.
Tanner
, “
Non-linear oscillatory flow of a soft solid-like viscoelastic material
,”
J. Non-Newtonian Fluid Mech.
92
(
1
),
67
80
(
2000
).
42.
T. S. K.
Ng
,
G. H.
McKinley
, and
R. H.
Ewoldt
, “
Large amplitude oscillatory shear flow of gluten dough: A model power-law gel
,”
J. Rheol.
55
(
3
),
627
654
(
2011
).
43.
R. I.
Tanner
,
F. Z.
Qi
, and
S. C.
Dai
, “
Bread dough rheology: An improved damage function model
,”
Rheol. Acta
50
(
1
),
75
86
(
2011
).
44.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
1994
).
45.
L. A.
Mihai
and
A.
Goriely
, “
Positive or negative poynting effect? The role of adscititious inequalities in hyperelastic materials
,”
Proc. R. Soc. A
467
(
2136
),
3633
3646
(
2011
).
46.
L.
Abu-Farah
 et al, “
Numerical and experimental investigation of dough kneading in a three-dimensional spiral kneader
,”
Phys. Fluids
31
(
11
),
113104
(
2019
).
47.
J. K.
Dienes
, “
On the analysis of rotation and stress rate in deforming bodies
,”
Acta Mech.
32
(
4
),
217
232
(
1979
).
48.
ImageJ, ImageJ-Fiji from https://imagej.net/Fiji/Downloads; accessed on December 19, 2019.
49.
R. E.
Hudson
 et al, “
An enhanced rheometer inertia correction procedure (ERIC) for the study of gelling systems using combined motor-transducer rheometers
,”
Phys. Fluids
29
(
12
),
121602
(
2017
).
You do not currently have access to this content.