The force between two approaching solids in a liquid medium becomes increasingly large with decreasing separation—a phenomenon that prevents contact between the two solids. This growth in force occurs because of the intervening liquid, and studies of such physical systems constitute the classical discipline of lubrication. Furthermore, when the solid(s) are soft, there are quantitative as well as qualitative alterations in the force interaction due to the solids’ deformation. The underlying physics as well as resultant system behavior is even more complex when forces of non-hydrodynamic origin come into play. Two major classes of such forces are the DLVO (Derjaguin–Landau–Verwey–Overbeek) forces and the non-DLVO molecular forces. Studies assessing the coupling of these physical phenomenon are avenues of contemporary research. With this view, we perform an analytical study of oscillatory motion of a rigid sphere over an ultra-thin soft coating with an electrolytic solution filling the gap between them. We delineate the distinctive effects of solvation force as well as substrate compliance. Our key finding is the major augmentation in the force and substrate-deformation characteristics of the system due to solvation force when the confinement reduces to a few nanometers. Consideration of solvation force leads to up to four orders of magnitude and up to three orders of magnitude increment in force and substrate-deformation, respectively. While higher softness leads to higher deformation (as expected), its effect on force and substrate-deformation characteristics exhibits a tendency toward amelioration of the increment due to solvation force.

1.
J.
Williams
,
Engineering Tribology
(
Cambridge University Press
,
2005
).
2.
M. D. A.
Cooley
and
M. E.
O’Neill
, “
On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere
,”
Mathematika
16
,
37
49
(
1969
).
3.
D. Y. C.
Chan
and
R. G.
Horn
, “
The drainage of thin liquid films between solid surfaces
,”
J. Chem. Phys.
83
,
5311
5324
(
1985
).
4.
B. J.
Hamrock
,
S. R.
Schmid
, and
B. O.
Jacobson
,
Fundamentals of Fluid Film Lubrication
(
CRC Press
,
2004
).
5.
G.
Higginson
, “
A model experiment in elasto-hydrodynamic lubrication
,”
Int. J. Mech. Sci.
4
,
205
210
(
1962
).
6.
D.
Dowson
, “
Elastohydrodynamic and micro-elastohydrodynamic lubrication
,”
Wear
190
,
125
138
(
1995
).
7.
X.
Yin
and
S.
Kumar
, “
Lubrication flow between a cavity and a flexible wall
,”
Phys. Fluids
17
,
063101
(
2005
).
8.
J. M.
Skotheim
and
L.
Mahadevan
, “
Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts
,”
Phys. Fluids
17
,
092101
(
2005
).
9.
N.
Balmforth
,
C. J.
Cawthorn
, and
R. V.
Craster
, “
Contact in a viscous fluid. Part 2. A compressible fluid and an elastic solid
,”
J. Fluid Mech.
646
,
339
361
(
2010
).
10.
J.
Chakraborty
and
S.
Chakraborty
, “
Combined influence of streaming potential and substrate compliance on load capacity of a planar slider bearing
,”
Phys. Fluids
23
,
082004
(
2011
).
11.
J. H.
Snoeijer
,
J.
Eggers
, and
C. H.
Venner
, “
Similarity theory of lubricated Hertzian contacts
,”
Phys. Fluids
25
,
101705
(
2013
).
12.
A.
Pandey
,
S.
Karpitschka
,
C. H.
Venner
, and
J. H.
Snoeijer
, “
Lubrication of soft viscoelastic solids
,”
J. Fluid Mech.
799
,
433
447
(
2016
).
13.
P.
Karan
,
J.
Chakraborty
, and
S.
Chakraborty
, “
Small-scale flow with deformable boundaries
,”
J. Indian Inst. Sci.
98
,
159
183
(
2018
).
14.
Z.
Zhang
,
V.
Bertin
,
M.
Arshad
,
E.
Raphael
,
T.
Salez
, and
A.
Maali
, “
Direct measurement of the elastohydrodynamic lift force at the nanoscale
,” arXiv:1907.05849 (
2019
).
15.
B.
Zhao
,
B.
Zhang
, and
K.
Zhang
, “
Modelling three-dimensional soft elastohydrodynamic lubrication contact of heterogeneous materials
,”
Tribol. Int.
129
,
377
389
(
2019
).
16.
S. J.
Weekley
,
S. L.
Waters
, and
O. E.
Jensen
, “
Transient elastohydrodynamic drag on a particle moving near a deformable wall
,”
Q. J. Mech. Appl. Math.
59
,
277
300
(
2006
).
17.
M. B.
Jones
,
G.
Fulford
,
C. P.
Please
,
D.
McElwain
, and
M. J.
Collins
, “
Elastohydrodynamics of the eyelid wiper
,”
Bull. Math. Biol.
70
,
323
343
(
2008
).
18.
J. P.
Butler
and
S. H.
Loring
, “
A potential elastohydrodynamic origin of load-support and coulomb-like friction in lung/chest wall lubrication
,”
J. Tribol.
130
,
041201
(
2008
).
19.
H. S.
Davies
,
D.
Débarre
,
N.
El Amri
,
C.
Verdier
,
R. P.
Richter
, and
L.
Bureau
, “
Elastohydrodynamic lift at a soft wall
,”
Phys. Rev. Lett.
120
,
198001
(
2018
).
20.
R.
Larsson
, “
Transient non-Newtonian elastohydrodynamic lubrication analysis of an involute spur gear
,”
Wear
207
,
67
73
(
1997
).
21.
D.
Dowson
and
P.
Ehret
, “
Past, present and future studies in elastohydrodynamics
,”
Proc. Inst. Mech. Eng., Part J
213
,
317
333
(
1999
).
22.
S.
Li
and
A.
Kahraman
, “
Prediction of spur gear mechanical power losses using a transient elastohydrodynamic lubrication model
,”
Tribol. Trans.
53
,
554
563
(
2010
).
23.
F.
Restagno
,
J.
Crassous
,
E.
Charlaix
,
C.
Cottin-Bizonne
, and
M.
Monchanin
, “
A new surface forces apparatus for nanorheology
,”
Rev. Sci. Instrum.
73
,
2292
2297
(
2002
).
24.
R.
Jones
and
D.
Hart
, “
Force interactions between substrates and SPM cantilevers immersed in fluids
,”
Tribol. Int.
38
,
355
361
(
2005
).
25.
H.-J.
Butt
,
B.
Cappella
, and
M.
Kappl
, “
Force measurements with the atomic force microscope: Technique, interpretation and applications
,”
Surf. Sci. Rep.
59
,
1
152
(
2005
).
26.
S.
Leroy
and
E.
Charlaix
, “
Hydrodynamic interactions for the measurement of thin film elastic properties
,”
J. Fluid Mech.
674
,
389
407
(
2011
).
27.
S.
Carpentier
,
M. S.
Rodrigues
,
E.
Charlaix
, and
J.
Chevrier
, “
Proximity effect on hydrodynamic interaction between a sphere and a plane measured by force feedback microscopy at different frequencies
,”
Appl. Phys. Lett.
107
,
044101
(
2015
).
28.
Y.
Wang
,
C.
Dhong
, and
J.
Frechette
, “
Out-of-contact elastohydrodynamic deformation due to lubrication forces
,”
Phys. Rev. Lett.
115
,
248302
(
2015
).
29.
Y.
Wang
,
M. R.
Tan
, and
J.
Frechette
, “
Elastic deformation of soft coatings due to lubrication forces
,”
Soft Matter
13
,
6718
6729
(
2017
).
30.
S.
Sukumaran
and
U.
Seifert
, “
Influence of shear flow on vesicles near a wall: A numerical study
,”
Phys. Rev. E
64
,
011916
(
2001
).
31.
J.
Beaucourt
,
T.
Biben
, and
C.
Misbah
, “
Optimal lift force on vesicles near a compressible substrate
,”
Europhys. Lett.
67
,
676
(
2004
).
32.
R.
Trouilloud
,
T. S.
Yu
,
A. E.
Hosoi
, and
E.
Lauga
, “
Soft swimming: Exploiting deformable interfaces for low Reynolds number locomotion
,”
Phys. Rev. Lett.
101
,
048102
(
2008
).
33.
H.
Brenner
, “
The slow motion of a sphere through a viscous fluid towards a plane surface
,”
Chem. Eng. Sci.
16
,
242
251
(
1961
).
34.
M. E.
O’Neill
and
K.
Stewartson
, “
On the slow motion of a sphere parallel to a nearby plane wall
,”
J. Fluid Mech.
27
,
705
724
(
1967
).
35.
A. J.
Goldman
,
R. G.
Cox
, and
H.
Brenner
, “
Slow viscous motion of a sphere parallel to a plane wall—I. Motion through a quiescent fluid
,”
Chem. Eng. Sci.
22
,
637
651
(
1967
).
36.
A. J.
Goldman
,
R. G.
Cox
, and
H.
Brenner
, “
Slow viscous motion of a sphere parallel to a plane wall—II. Couette flow
,”
Chem. Eng. Sci.
22
,
653
660
(
1967
).
37.
R. H.
Davis
,
J.
Serayssol
, and
E. J.
Hinch
, “
The elastohydrodynamic collision of two spheres
,”
J. Fluid Mech.
163
,
479
497
(
1986
).
38.
J.
Serayssol
and
R. H.
Davis
, “
The influence of surface interactions on the elastohydrodynamic collision of two spheres
,”
J. Colloid Interface Sci.
114
,
54
66
(
1986
).
39.
T. G. M.
van de Ven
,
P.
Warszynski
, and
S. S.
Dukhin
, “
Attractive electroviscous forces
,”
Colloids Surf., A
79
,
33
41
(
1993
).
40.
S. G.
Bike
and
D. C.
Prieve
, “
Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall: 1. Theory
,”
J. Colloid Interface Sci.
175
,
422
434
(
1995
).
41.
S. G.
Bike
,
L.
Lazarro
, and
D. C.
Prieve
, “
Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall: 2. Experiment
,”
J. Colloid Interface Sci.
175
,
411
421
(
1995
).
42.
X.
Wu
,
P.
Warszynski
, and
T. G. M.
van de Ven
, “
Electrokinetic lift: Observations and comparisons with theories
,”
J. Colloid Interface Sci.
180
,
61
69
(
1996
).
43.
S. M.
Tabatabaei
,
T. G. M.
van de Ven
, and
A. D.
Rey
, “
Electroviscous sphere–wall interactions
,”
J. Colloid Interface Sci.
301
,
291
301
(
2006
).
44.
J.
Chakraborty
and
S.
Chakraborty
, “
Influence of streaming potential on the elastic response of a compliant microfluidic substrate subjected to dynamic loading
,”
Phys. Fluids
22
,
122002
(
2010
).
45.
J.
Urzay
, “
Asymptotic theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft and sticky substrates at low Reynolds numbers
,”
J. Fluid Mech.
653
,
391
429
(
2010
).
46.
R. M.
Pashley
and
J. N.
Israelachvili
, “
Molecular layering of water in thin films between mica surfaces and its relation to hydration forces
,”
J. Colloid Interface Sci.
101
,
511
523
(
1984
).
47.
J.
Israelachvili
, “
Solvation forces and liquid structure, as probed by direct force measurements
,”
Acc. Chem. Res.
20
,
415
421
(
1987
).
48.
J. N.
Israelachvili
and
P. M.
McGuiggan
, “
Forces between surfaces in liquids
,”
Science
241
,
795
800
(
1988
).
49.
D.
Henderson
and
K.-Y.
Chan
, “
Equation of state and correlation function contact values of a hard sphere mixture
,”
Mol. Phys.
98
,
1005
1010
(
2000
).
50.
D.
Henderson
,
F. F.
Abraham
, and
J. A.
Barker
, “
The Ornstein-Zernike equation for a fluid in contact with a surface
,”
Mol. Phys.
31
,
1291
1295
(
1976
).
51.
I. K.
Snook
and
D.
Henderson
, “
Monte Carlo study of a hard-sphere fluid near a hard wall
,”
J. Chem. Phys.
68
,
2134
2139
(
1978
).
52.
I. K.
Snook
and
W.
Van Megen
, “
Solvation forces in simple dense fluids. I
,”
J. Chem. Phys.
72
,
2907
2913
(
1980
).
53.
R.
Pashley
, “
DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties
,”
J. Colloid Interface Sci.
83
,
531
546
(
1981
).
54.
R.
Pashley
, “
Hydration forces between mica surfaces in aqueous electrolyte solutions
,”
J. Colloid Interface Sci.
80
,
153
162
(
1981
).
55.
R. M.
Pashley
, “
Hydration forces between mica surfaces in electrolyte solutions
,”
Adv. Colloid Interface Sci.
16
,
57
62
(
1982
).
56.
J.
Israelachvili
and
R.
Pashley
, “
The hydrophobic interaction is long range, decaying exponentially with distance
,”
Nature
300
,
341
342
(
1982
).
57.
J.
Gao
,
W.
Luedtke
, and
U.
Landman
, “
Layering transitions and dynamics of confined liquid films
,”
Phys. Rev. Lett.
79
,
705
(
1997
).
58.
Y.
Qin
and
K. A.
Fichthorn
, “
Molecular-dynamics simulation of forces between nanoparticles in a Lennard-Jones liquid
,”
J. Chem. Phys.
119
,
9745
9754
(
2003
).
59.
C.
Zhang
, “
Research on thin film lubrication: State of the art
,”
Tribol. Int.
38
,
443
448
(
2005
).
60.
J.
Gao
,
R.
Szoszkiewicz
,
U.
Landman
,
E.
Riedo
 et al, “
Structured and viscous water in subnanometer gaps
,”
Phys. Rev. B
75
,
115415
(
2007
).
61.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press
,
2011
).
62.
K.
Yang
,
Y.
Lin
,
X.
Lu
, and
A. V.
Neimark
, “
Solvation forces between molecularly rough surfaces
,”
J. Colloid Interface Sci.
362
,
382
388
(
2011
).
63.
S.
Jang
and
J.
Tichy
, “
Rheological models for thin film EHL contacts
,”
J. Tribol.
117
,
22
28
(
1995
).
64.
H.
Matsuoka
and
T.
Kato
, “
Discrete nature of ultrathin lubrication film between mica surfaces
,”
J. Tribol.
118
,
832
838
(
1996
).
65.
H.
Matsuoka
and
T.
Kato
, “
An ultrathin liquid film lubrication theory—Calculation method of solvation pressure and its application to the EHL problem
,”
J. Tribol.
119
,
217
226
(
1997
).
66.
M.
Al-Samieh
and
H.
Rahnejat
, “
Ultra-thin lubricating films under transient conditions
,”
J. Phys. D: Appl. Phys.
34
,
2610
2621
(
2001
).
67.
S.
Zhang
,
C.
Zhang
,
Y.
Hu
, and
L.
Ma
, “
Numerical simulation of mixed lubrication considering surface forces
,”
Tribol. Int.
140
,
105878
(
2019
).
68.
A.
Trokhymchuk
,
D.
Henderson
,
A.
Nikolov
, and
D. T.
Wasan
, “
A simple calculation of structural and depletion forces for fluids/suspensions confined in a film
,”
Langmuir
17
,
4940
4947
(
2001
).
69.
J. M.
Skotheim
and
L.
Mahadevan
, “
Soft lubrication
,”
Phys. Rev. Lett.
92
,
245509
(
2004
).
70.
J.
Urzay
,
S. G. L.
Smith
, and
B. J.
Glover
, “
The elastohydrodynamic force on a sphere near a soft wall
,”
Phys. Fluids
19
,
103106
(
2007
).
71.
W.
Russel
,
D.
Saville
, and
W.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
1990
).
72.
D.
Tabor
and
R.
Winterton
, “
The direct measurement of normal and retarded van der Waals forces
,”
Proc. R. Soc. London, Ser. A
312
,
435
450
(
1969
).
73.
J. N.
Israelachvili
and
G. E.
Adams
, “
Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm
,”
J. Chem. Soc., Faraday Trans. 1
74
,
975
1001
(
1978
).
74.
D. J.
Mitchell
,
B. W.
Ninham
, and
B. A.
Pailthorpe
, “
Solvent structure in particle interactions. Part 2.—Forces at short range
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1116
1125
(
1978
).
75.
J. N.
Israelachvili
, “
Forces between surfaces in liquids
,”
Adv. Colloid Interface Sci.
16
,
31
47
(
1982
).
76.
L. B.
Boinovich
, “
Long-range surface forces and their role in the progress
,”
Russ. Chem. Rev.
76
,
471
488
(
2007
).
77.
P.
Tarazona
and
L.
Vicente
, “
A model for density oscillations in liquids between solid walls
,”
Mol. Phys.
56
,
557
572
(
1985
).
78.
I.
Mezic
and
A.
Majumdar
, “
Stability regimes of thin liquid films
,”
Microscale Thermophys. Eng.
2
,
203
213
(
1998
).
79.
H.
Christenson
and
R.
Horn
, “
Direct measurement of the force between solid surfaces in a polar liquid
,”
Chem. Phys. Lett.
98
,
45
48
(
1983
).
80.
L. J. D.
Frink
and
F.
van Swol
, “
Solvation forces between rough surfaces
,”
J. Chem. Phys.
108
,
5588
5598
(
1998
).
81.
J. J.
Valle-Delgado
,
J. A.
Molina-Bolivar
,
F.
Galisteo-Gonzalez
,
M. J.
Galvez-Ruiz
,
A.
Feiler
, and
M. W.
Rutland
, “
Hydration forces between silica surfaces: Experimental data and predictions from different theories
,”
J. Chem. Phys.
123
,
034708
(
2005
).
82.
O. I.
Vinogradova
and
F.
Feuillebois
, “
Elastohydrodynamic collision of two spheres allowing slip on their surfaces
,”
J. Colloid Interface Sci.
221
,
1
12
(
2000
).
83.
S.
Das
and
S.
Chakraborty
, “
Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena
,”
Phys. Rev. E
84
,
012501
(
2011
).
84.
S.
Chakraborty
,
D.
Chatterjee
, and
C.
Bakli
, “
Nonlinear amplification in electrokinetic pumping in nanochannels in the presence of hydrophobic interactions
,”
Phys. Rev. Lett.
110
,
184503
(
2013
).
85.
K. G.
Naik
,
S.
Chakraborty
, and
J.
Chakraborty
, “
Finite size effects of ionic species sensitively determine load bearing capacities of lubricated systems under combined influence of electrokinetics and surface compliance
,”
Soft Matter
13
,
6422
6429
(
2017
).
86.
P.
Karan
,
J.
Chakraborty
, and
S.
Chakraborty
, “
Electrokinetics over hydrophobic surfaces
,”
Electrophoresis
40
,
616
624
(
2018
).
87.
J.
Chakraborty
and
S.
Chakraborty
, “
Influence of hydrophobic effects on streaming potential
,”
Phys. Rev. E
88
,
043007
(
2013
).
88.
S.
Chakraborty
, “
Order parameter modeling of fluid dynamics in narrow confinements subjected to hydrophobic interactions
,”
Phys. Rev. Lett.
99
,
094504
(
2007
).
89.
S.
Chakraborty
, “
Generalization of interfacial electrohydrodynamics in the presence of hydrophobic interactions in narrow fluidic confinements
,”
Phys. Rev. Lett.
100
,
097801
(
2008
).
90.
S.
Chakraborty
, “
Order parameter description of electrochemical-hydrodynamic interactions in nanochannels
,”
Phys. Rev. Lett.
101
,
184501
(
2008
).
91.
J.
Chakraborty
,
S.
Pati
,
S. K.
Som
, and
S.
Chakraborty
, “
Consistent description of electrohydrodynamics in narrow fluidic confinements in the presence of hydrophobic interactions
,”
Phys. Rev. E
85
,
046305
(
2012
).
92.
D.
Chatterjee
and
S.
Chakraborty
, “
A hybrid lattice Boltzmann model for solid–liquid phase transition in presence of fluid flow
,”
Phys. Lett. A
351
,
359
367
(
2006
).
93.
P.
Kaushik
,
P. K.
Mondal
, and
S.
Chakraborty
, “
Flow dynamics of a viscoelastic fluid squeezed and extruded between two parallel plates
,”
J. Non-Newtonian Fluid Mech.
227
,
56
64
(
2016
).
94.
P.
Abhimanyu
,
P.
Kaushik
,
P. K.
Mondal
, and
S.
Chakraborty
, “
Transiences in rotational electro-hydrodynamics microflows of a viscoelastic fluid under electrical double layer phenomena
,”
J. Non-Newtonian Fluid Mech.
231
,
56
67
(
2016
).
95.
R.
Kate
,
P.
Das
, and
S.
Chakraborty
, “
Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface
,”
J. Fluid Mech.
573
,
247
263
(
2007
).
96.
S.
Chakraborty
and
S.
Som
, “
Heat transfer in an evaporating thin liquid film moving slowly along the walls of an inclined microchannel
,”
Int. J. Heat Mass Transfer
48
,
2801
2805
(
2005
).
97.
S.
Das
,
T.
Das
, and
S.
Chakraborty
, “
Analytical solutions for the rate of DNA hybridization in a microchannel in the presence of pressure-driven and electroosmotic flows
,”
Sens. Actuators, B
114
,
957
963
(
2006
).
98.
A.
Bandopadhyay
,
D.
Tripathi
, and
S.
Chakraborty
, “
Electroosmosis-modulated peristaltic transport in microfluidic channels
,”
Phys. Fluids
28
,
052002
(
2016
).
99.
S.
Das
,
S.
Chakraborty
, and
S. K.
Mitra
, “
Redefining electrical double layer thickness in narrow confinements: Effect of solvent polarization
,”
Phys. Rev. E
85
,
051508
(
2012
).
100.
S.
Chakraborty
and
S.
Ray
, “
Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels
,”
Phys. Fluids
20
,
083602
(
2008
).
101.
S.
Das
,
S.
Chakraborty
, and
P.
Dutta
, “
Studies on thermal stratification phenomenon in LH2 storage vessel
,”
Heat Transfer Eng.
25
,
54
66
(
2004
).
102.
S.
Chakraborty
, “
Towards a generalized representation of surface effects on pressure-driven liquid flow in microchannels
,”
Appl. Phys. Lett.
90
,
034108
(
2007
).
103.
S.
Sarkar
,
P. M.
Raj
,
S.
Chakraborty
, and
P.
Dutta
, “
Three-dimensional computational modeling of momentum, heat, and mass transfer in a laser surface alloying process
,”
Numer. Heat Transfer, Part A
42
,
307
326
(
2002
).
104.
P. M.
Raj
,
S.
Sarkar
,
S.
Chakraborty
,
G.
Phanikumar
,
P.
Dutta
, and
K.
Chattopadhyay
, “
Modelling of transport phenomena in laser surface alloying with distributed species mass source
,”
Int. J. Heat Fluid Flow
23
,
298
307
(
2002
).
105.
L. G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
2007
), Vol. 7.
106.
M. H.
Sadd
,
Elasticity: Theory, Applications, and Numerics
(
Academic Press
,
2009
).
107.
J.
Harding
and
I.
Sneddon
, “
The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch
,”
Math. Proc. Cambridge Philos. Soc.
41
,
16
26
(
1945
).
108.
J.
Li
and
T.-W.
Chou
, “
Elastic field of a thin-film/substrate system under an axisymmetric loading
,”
Int. J. Solids Struct.
34
,
4463
4478
(
1997
).
109.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
(
John Wiley & Sons
,
1980
).
110.
R. C.
Batra
,
Elements of Continuum Mechanics
(
AIAA
,
2006
).
111.
A.
Goriely
,
M.
Destrade
, and
M.
Ben Amar
, “
Instabilities in elastomers and in soft tissues
,”
Q. J. Mech. Appl. Math.
59
,
615
630
(
2006
).
112.
I.
Bijelonja
,
I.
Demirdžić
, and
S.
Muzaferija
, “
A finite volume method for incompressible linear elasticity
,”
Comput. Methods Appl. Mech. Eng.
195
,
6378
6390
(
2006
).
113.
B.
Rallabandi
,
B.
Saintyves
,
T.
Jules
,
T.
Salez
,
C.
Schönecker
,
L.
Mahadevan
, and
H. A.
Stone
, “
Rotation of an immersed cylinder sliding near a thin elastic coating
,”
Phys. Rev. Fluids
2
,
074102
(
2017
).
114.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
115.
M.
Moazzami-Gudarzi
,
T.
Kremer
,
V.
Valmacco
,
P.
Maroni
,
M.
Borkovec
, and
G.
Trefalt
, “
Interplay between depletion and double-layer forces acting between charged particles in solutions of like-charged polyelectrolytes
,”
Phys. Rev. Lett.
117
,
088001
(
2016
).
116.
W.
Saam
and
C.
Ebner
, “
Classical fluid structure near solid substrates: A comparison of different theories
,”
Phys. Rev. A
17
,
1768
(
1978
).
117.
D. Y.
Chan
,
D. J.
Mitchell
,
B. W.
Ninham
, and
B.
Pailthorpe
, “
Short-range interactions mediated by a solvent with surface adhesion
,”
Mol. Phys.
35
,
1669
1679
(
1978
).
118.
H. K.
Christenson
, “
DLVO (Derjaguin–Landau–Verwey–Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids
,”
J. Chem. Soc., Faraday Trans. 1
80
,
1933
1946
(
1984
).
119.
M.
Kinoshita
,
S.-y.
Iba
,
K.
Kuwamoto
, and
M.
Harada
, “
Interaction between macroparticles in Lennard-Jones fluids or in hard-sphere mixtures
,”
J. Chem. Phys.
105
,
7177
7183
(
1996
).
You do not currently have access to this content.