Guiding active microswimmers by external fields to requested target locations is a promising strategy to realize complex transport on the microscale. For this purpose, one possibility consists of attaching the microswimmers to orientable passive components. Accordingly, we analyze theoretically, using a minimal model, the dynamics of a microswimmer when rigidly attached to a (significantly larger) microplatelet, here represented by a thin circular disk. In this way, we first determine the flow field in the whole space induced by a Stokeslet that is located above the center of a spatially fixed rigid disk of no-slip surface conditions. Finally, we determine and analyze possible trajectories of the overall composite. To this end, the platelet is additionally endowed with a permanent magnetic moment, which allows us to steer the motion of the whole composite by a homogeneous external magnetic field. As previous experimental studies suggest, related setups may be helpful to guide sperm cells to requested targets or for the purpose of coordinated drug delivery.

1.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Netherlands, Martinus Nijhoff Publishers
,
The Hague
,
2012
).
2.
B.
Rallabandi
,
Z.
Zheng
,
M.
Winton
, and
H. A.
Stone
, “
Wind-driven formation of ice bridges in straits
,”
Phys. Rev. Lett.
118
,
128701
(
2017
).
3.
B.
Rallabandi
,
Z.
Zheng
,
M.
Winton
, and
H. A.
Stone
, “
Formation of sea ice bridges in narrow straits in response to wind and water stresses
,”
J. Geophys. Res. Oceans
122
,
5588
5610
, (
2017
).
4.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Courier Corporation
,
New York, USA
,
2013
).
5.
Soft Matter at Aqueous Interfaces
, Lecture Notes in Physics Vol. 917, edited by
P. R.
Lang
and
Y.
Liu
(
Springer International Publishing Switzerland
,
Cham, Switzerland
,
2016
).
6.
T. M.
Squires
and
S. R.
Quake
, “
Microfluidics: Fluid physics at the nanoliter scale
,”
Rev. Mod. Phys.
77
,
977
(
2005
).
7.
E.
Lauga
, “
Bacterial hydrodynamics
,”
Annu. Rev. Fluid Mech.
48
,
105
130
(
2016
).
8.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
9.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers – single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
10.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
11.
A.
Zöttl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys.: Condens. Matter
28
,
253001
(
2016
).
12.
A. M.
Menzel
, “
Tuned, driven, and active soft matter
,”
Phys. Rep.
554
,
1
45
(
2015
).
13.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
(
2013
).
14.
P.
Illien
,
R.
Golestanian
, and
A.
Sen
, “
‘Fuelled’ motion: Phoretic motility and collective behaviour of active colloids
,”
Chem. Soc. Rev.
46
,
5508
5518
(
2017
).
15.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Annu. Rev. Fluid Mech.
21
,
61
99
(
1989
).
16.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
, “
Propulsion of a molecular machine by asymmetric distribution of reaction products
,”
Phys. Rev. Lett.
94
,
220801
(
2005
).
17.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
, “
Designing phoretic micro- and nano-swimmers
,”
New J. Phys.
9
,
126
(
2007
).
18.
H.-R.
Jiang
,
N.
Yoshinaga
, and
M.
Sano
, “
Active motion of a Janus particle by self-thermophoresis in a defocused laser beam
,”
Phys. Rev. Lett.
105
,
268302
(
2010
).
19.
A.
Würger
, “
Thermal non-equilibrium transport in colloids
,”
Rep. Prog. Phys.
73
,
126601
(
2010
).
20.
A.
Würger
, “
Self-diffusiophoresis of Janus particles in near-critical mixtures
,”
Phys. Rev. Lett.
115
,
188304
(
2015
).
21.
H.
Zhang
,
L.
Koens
,
E.
Lauga
,
A.
Mourran
, and
M.
Möller
, “
A light-driven microgel rotor
,”
Small
15
,
1903379
(
2019
).
22.
A.
Najafi
and
R.
Golestanian
, “
Simple swimmer at low Reynolds number: Three linked spheres
,”
Phys. Rev. E
69
,
062901
(
2004
).
23.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
, “
Microscopic artificial swimmers
,”
Nature
437
,
862
(
2005
).
24.
R.
Golestanian
and
A.
Ajdari
, “
Analytic results for the three-sphere swimmer at low Reynolds number
,”
Phys. Rev. E
77
,
036308
(
2008
).
25.
G.
Grosjean
,
M.
Hubert
,
G.
Lagubeau
, and
N.
Vandewalle
, “
Realization of the Najafi-Golestanian microswimmer
,”
Phys. Rev. E
94
,
021101
(
2016
).
26.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
,
C.
Hoell
, and
H.
Löwen
, “
Swimming trajectories of a three-sphere microswimmer near a wall
,”
J. Chem. Phys.
148
,
134904
(
2018
).
27.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
,
A. J. T. M.
Mathijssen
,
C.
Hoell
,
S.
Goh
,
J.
Bławzdziewicz
,
A. M.
Menzel
, and
H.
Löwen
, “
State diagram of a three-sphere microswimmer in a channel
,”
J. Phys.: Condes. Matter
30
,
254004
(
2018
).
28.
A.
Sukhov
,
S.
Ziegler
,
Q.
Xie
,
O.
Trosman
,
J.
Pande
,
G.
Grosjean
,
M.
Hubert
,
N.
Vandewalle
,
A.-S.
Smith
, and
J.
Harting
, “
Optimal motion of triangular magnetocapillary swimmers
,”
J. Chem. Phys.
151
,
124707
(
2019
).
29.
S.
Ziegler
,
M.
Hubert
,
N.
Vandewalle
,
J.
Harting
, and
A.-S.
Smith
, “
A general perturbative approach for bead-based microswimmers reveals rich self-propulsion phenomena
,”
New J. Phys.
21
,
113017
(
2019
).
30.
B.
Nasouri
,
A.
Vilfan
, and
R.
Golestanian
, “
Efficiency limits of the three-sphere swimmer
,”
Phys. Rev. Fluids
4
,
073101
(
2019
).
31.
G. I.
Taylor
, “
Analysis of the swimming of microscopic organisms
,”
Proc. R. Soc. London, Ser. A
209
,
447
461
(
1951
).
32.
J. R.
Blake
, “
A spherical envelope approach to ciliary propulsion
,”
J. Fluid Mech.
46
,
199
208
(
1971
).
33.
L.
Baraban
,
D.
Makarov
,
R.
Streubel
,
I.
Monch
,
D.
Grimm
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Catalytic Janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery
,”
ACS Nano
6
,
3383
3389
(
2012
).
34.
A. R.
Sprenger
,
M. A.
Fernandez-Rodriguez
,
L.
Alvarez
,
L.
Isa
,
R.
Wittkowski
, and
H.
Löwen
, “
Active Brownian motion with orientation-dependent motility: Theory and experiments
,”
Langmuir
(published online,
2020
).
35.
A. A.
Solovev
,
S.
Sanchez
,
M.
Pumera
,
Y. F.
Mei
, and
O. G.
Schmidt
, “
Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects
,”
Adv. Funct. Mater.
20
,
2430
2435
(
2010
).
36.
H.
Xu
,
M.
Medina-Sánchez
,
V.
Magdanz
,
L.
Schwarz
,
F.
Hebenstreit
, and
O. G.
Schmidt
, “
Sperm-hybrid micromotor for targeted drug delivery
,”
ACS Nano
12
,
327
337
(
2017
).
37.
V.
Magdanz
,
M.
Guix
,
F.
Hebenstreit
, and
O. G.
Schmidt
, “
Dynamic polymeric microtubes for the remote-controlled capture, guidance, and release of sperm cells
,”
Adv. Mater.
28
,
4084
4089
(
2016
).
38.
M. U.
Kim
, “
Axisymmetric Stokes flow due to a point force near a circular disk
,”
J. Phys. Soc. Jpn.
52
,
449
455
(
1983
).
39.
T.
Miyazaki
, “
The effect of a circular disk on the motion of a small particle in a viscous fluid
,”
J. Phys. Soc. Jpn.
53
,
1017
1025
(
1984
).
40.
I. N.
Sneddon
, “
The elementary solution of dual integral equations
,”
Glasgow Math. J.
4
,
108
110
(
1960
).
41.
E. T.
Copson
, “
On certain dual integral equations
,”
Glasgow Math. J.
5
,
21
24
(
1961
).
42.
Y.
Fily
,
A.
Baskaran
, and
M. C.
Marchetti
, “
Cooperative self-propulsion of active and passive rotors
,”
Soft Matter
8
,
3002
3009
(
2012
).
43.
A.
Baskaran
and
M. C.
Marchetti
, “
Statistical mechanics and hydrodynamics of bacterial suspensions
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
15567
15572
(
2009
).
44.
A. M.
Menzel
,
A.
Saha
,
C.
Hoell
, and
H.
Löwen
, “
Dynamical density functional theory for microswimmers
,”
J. Chem. Phys.
144
,
024115
(
2016
).
45.
S.
Heidenreich
,
J.
Dunkel
,
S. H. L.
Klapp
, and
M.
Bär
, “
Hydrodynamic length-scale selection in microswimmer suspensions
,”
Phys. Rev. E
94
,
020601
(
2016
).
46.
T. C.
Adhyapak
and
S.
Jabbari-Farouji
, “
Flow properties and hydrodynamic interactions of rigid spherical microswimmers
,”
Phys. Rev. E
96
,
052608
(
2017
).
47.
T. C.
Adhyapak
and
S.
Jabbari-Farouji
, “
Ewald sum for hydrodynamic interactions of rigid spherical microswimmers
,”
J. Chem. Phys.
149
,
144110
(
2018
).
48.
H.
Reinken
,
S. H. L.
Klapp
,
M.
Bär
, and
S.
Heidenreich
, “
Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions
,”
Phys. Rev. E
97
,
022613
(
2018
).
49.
A.
Daddi-Moussa-Ider
and
A. M.
Menzel
, “
Dynamics of a simple model microswimmer in an anisotropic fluid: Implications for alignment behavior and active transport in a nematic liquid crystal
,”
Phys. Rev. Fluids
3
,
094102
(
2018
).
50.
A.
Oberbeck
, “
Über stationäre Flüssigkeitsbewegungen mit Berücksichtigung der inneren Reibung
,”
J. Reine Angew. Math.
81
,
62
80
(
1876
).
51.
R. A.
Sampson
, “
On Stokes’s current function
,”
Philos. Trans. R. Soc. A
182
,
449
518
(
1891
).
52.
M.
Ray
, “
Application of Bessel functions to the solution of problem of motion of a circular disk in viscous liquid
,”
London Edinburgh, Dublin Philos. Mag.
21
,
546
564
(
1936
).
53.
R.
Roscoe
, “
The flow of viscous fluids round plane obstacles
,”
London Edinburgh, Dublin Philos. Mag.
40
,
338
351
(
1949
).
54.
S. C.
Gupta
, “
Slow broad side motion of a flat plate in a viscous liquid
,”
Z. Angew. Math. Phys.
8
,
257
261
(
1957
).
55.
J. P.
Tanzosh
and
H. A.
Stone
, “
A general approach for analyzing the arbitrary motion of a circular disk in a Stokes flow
,”
Chem. Eng. Commun.
148
,
333
346
(
1996
).
56.
J. D.
Sherwood
, “
Resistance coefficients for Stokes flow around a disk with a Navier slip condition
,”
Phys. Fluids
24
,
093103
(
2012
).
57.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Hydrodynamic interaction between particles near elastic interfaces
,”
J. Chem. Phys.
145
,
014905
(
2016
).
58.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
,
S.
Gekle
,
A. M.
Menzel
, and
H.
Löwen
, “
Hydrodynamic coupling and rotational mobilities nearby planar elastic membranes
,”
J. Chem. Phys.
149
,
014901
(
2018
).
59.
R.
Shail
and
B. A.
Packham
, “
Some asymmetric Stokes-flow problems
,”
J. Eng. Math.
21
,
331
348
(
1987
).
60.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube
,”
Phys. Fluids
29
,
111901
(
2017
).
61.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Slow rotation of a spherical particle inside an elastic tube
,”
Acta Mech.
229
,
149
171
(
2018
).
62.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
), Vol. 5.
63.
H. C.
Crenshaw
, “
Orientation by helical motion—I. Kinematics of the helical motion of organisms with up to six degrees of freedom
,”
Bull. Math. Biol.
55
,
197
212
(
1993
).
64.
B. M.
Friedrich
and
F.
Jülicher
, “
Steering chiral swimmers along noisy helical paths
,”
Phys. Rev. Lett.
103
,
068102
(
2009
).
65.
J. D.
Lawrence
,
A Catalog of Special Plane Curves
(
Dover Publications, Inc.
,
Mineola, New York, USA
,
2016
).
66.
H.
Löwen
, “
Active particles in noninertial frames: How to self-propel on a carousel
,”
Phys. Rev. E
99
,
062608
(
2019
).
67.
B.
ten Hagen
,
F.
Kümmel
,
R.
Wittkowski
,
D.
Takagi
,
H.
Löwen
, and
C.
Bechinger
, “
Gravitaxis of asymmetric self-propelled colloidal particles
,”
Nat. Commun.
5
,
4829
(
2014
).
68.
A. I.
Campbell
,
R.
Wittkowski
,
B.
ten Hagen
,
H.
Löwen
, and
S. J.
Ebbens
, “
Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory
,”
J. Chem. Phys.
147
,
084905
(
2017
).
69.
M.
Lisicki
,
S. Y.
Reigh
, and
E.
Lauga
, “
Autophoretic motion in three dimensions
,”
Soft Matter
14
,
3304
3314
(
2018
).
70.
R.
Wittkowski
and
H.
Löwen
, “
Self-propelled Brownian spinning top: Dynamics of a biaxial swimmer at low Reynolds numbers
,”
Phys. Rev. E
85
,
021406
(
2012
).
71.
H. C.
Berg
and
L.
Turner
, “
Movement of microorganisms in viscous environments
,”
Nature
278
,
349
(
1979
).
72.
J.
Yang
,
C. W.
Wolgemuth
, and
G.
Huber
, “
Kinematics of the swimming of spiroplasma
,”
Phys. Rev. Lett.
102
,
218102
(
2009
).
73.
B.
Liu
,
M.
Gulino
,
M.
Morse
,
J. X.
Tang
,
T. R.
Powers
, and
K. S.
Breuer
, “
Helical motion of the cell body enhances caulobacter crescentus motility
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
11252
11256
(
2014
).
74.
M. A.
Constantino
,
M.
Jabbarzadeh
,
H. C.
Fu
, and
R.
Bansil
, “
Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape
,”
Sci. Adv.
2
,
e1601661
(
2016
).
75.
Y.
Hyon
,
T. R.
Powers
,
R.
Stocker
, and
H. C.
Fu
, “
The wiggling trajectories of bacteria
,”
J. Fluid Mech.
705
,
58
76
(
2012
).
76.
H. C.
Crenshaw
, “
A new look at locomotion in microorganisms: Rotating and translating
,”
Am. Zool.
36
,
608
618
(
1996
).
77.
G.
Corkidi
,
B.
Taboada
,
C. D.
Wood
,
A.
Guerrero
, and
A.
Darszon
, “
Tracking sperm in three-dimensions
,”
Biochem. Biophys. Res. Commun.
373
,
125
129
(
2008
).
78.
U. B.
Kaupp
,
N. D.
Kashikar
, and
I.
Weyand
, “
Mechanisms of sperm chemotaxis
,”
Annu. Rev. Physiol.
70
,
93
117
(
2008
).
79.
A.
Hilfinger
and
F.
Jülicher
, “
The chirality of ciliary beats
,”
Phys. Biol.
5
,
016003
(
2008
).
80.
T.-W.
Su
,
L.
Xue
, and
A.
Ozcan
, “
High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16018
16022
(
2012
).
81.
B. M.
Friedrich
and
F.
Jülicher
, “
The stochastic dance of circling sperm cells: Sperm chemotaxis in the plane
,”
New J. Phys.
10
,
123025
(
2008
).
82.
F. J.
Sevilla
, “
Diffusion of active chiral particles
,”
Phys. Rev. E
94
,
062120
(
2016
).
83.
H. C.
Berg
and
R. A.
Anderson
, “
Bacteria swim by rotating their flagellar filaments
,”
Nature
245
,
380
(
1973
).
84.
E. C.
Titchmarsh
,
Introduction to the Theory of Fourier Integrals
(
Clarendon Press
,
Oxford
,
1948
).
85.
C. J.
Tranter
,
Integral Transforms in Mathematical Physics
(
Wiley
,
New York, USA
,
1951
).
86.
A.
Daddi-Moussa-Ider
,
B.
Kaoui
, and
H.
Löwen
, “
Axisymmetric flow due to a Stokeslet near a finite-sized elastic membrane
,”
J. Phys. Soc. Jpn.
88
,
054401
(
2019
).
87.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
Cambridge, UK
,
1995
).
88.
T.
Carleman
, “
Zur Theorie der linearen Integralgleichungen
,”
Math. Z.
9
,
196
217
(
1921
).
89.
F.
Smithies
,
Integral Equations
(
Cambridge University Press
,
Cambridge, UK
,
1958
), Vol. 172.
90.
R. S.
Anderssen
,
F. R.
De Hoog
, and
M. A.
Lukas
,
The Application and Numerical Solution of Integral Equations
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1980
), Vol. 6.
91.
E. T.
Whittaker
and
G. N.
Watson
,
A Course of Modern Analysis
(
Cambridge University Press
,
Cambridge, UK
,
1996
).
92.
T.
Carleman
, “
Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen
,”
Math. Z.
15
,
111
120
(
1922
).
93.
J. D.
Tamarkin
, “
On integrable solutions of Abel’s integral equation
,”
Ann. Math.
31
,
219
229
(
1930
).
94.
B. E.
Meserve
, “
Double factorials
,”
Am. Math. Mon.
55
,
425
426
(
1948
).
95.
A.
Goldfine
, “
Taylor series methods for the solution of Volterra integral and integro-differential equations
,”
Math. Comput.
31
,
691
707
(
1977
).
96.
R. P.
Kanwal
and
K. C.
Liu
, “
A Taylor expansion approach for solving integral equations
,”
Int. J. Math. Educ. Sci. Tech.
20
,
411
414
(
1989
).
97.
Y.
Ren
,
B.
Zhang
, and
H.
Qiao
, “
A simple Taylor-series expansion method for a class of second kind integral equations
,”
J. Comput. Appl. Math.
110
,
15
24
(
1999
).
98.
B.
Davies
,
Integral Transforms and Their Applications
(
Springer Science & Business Media
,
New York
,
2012
), Vol. 41.
99.
H. A.
Lorentz
, “
Ein allgemeiner Satz, die Bewegung einer reibenden Flüssigkeit betreffend, nebst einigen Anwendungen desselben
,”
Abh. Theor. Phys.
1
,
23
(
1907
).
100.
J. R.
Blake
, “
A note on the image system for a Stokeslet in a no-slip boundary
,”
Math. Proc. Cambridge Philos. Soc.
70
,
303
310
(
1971
).
101.
V.
Škultéty
and
A.
Morozov
, “
A note on forces exerted by a Stokeslet on confining boundaries
,”
J. Fluid Mech.
882
,
A1
(
2020
).
You do not currently have access to this content.