Despite its significance in understanding behaviors of biological cells with nucleus or designing functions of complex artificial capsules in applications, the dynamics of elastic capsules enclosing complicated internal structures in flow is still largely unexplored. In this study, by using our own three-dimensional front-tracking finite-difference model, we present a numerical investigation into the dynamics of a compound capsule in a simple shear flow whose inner and outer membranes have the same prolate ellipsoidal shape at the rest state. Particular interest is focused on the unsynchronized motion of the inner and outer membranes. Regarding the dynamical regime, both the inner and outer capsules can undergo either synchronized or unsynchronized dynamical regimes (i.e., swinging or tumbling), which strongly depends on the inner-to-outer capillary number ratio Cain/Caout, the inner-to-outer volume ratio ϕ, and the prolate aspect ratio a/b. Particularly, via establishing a phase diagram based on a/b and ϕ at Cain/Caout = 1, we find that the inner and outer membranes can exist simultaneously in different dynamical regimes, even if they have the same deformability and the same shape. More importantly, if the detailed oscillation behavior is also concerned besides the capsule’s dynamical regime, such as the transient shape and the oscillating period, unsynchronization is always obvious between the inner and outer capsules. Specifically, the inner capsule exhibits a slower oscillation than the outer capsule no matter if they lie in the swinging or tumbling regime.

1.
D.
Barthès-Biesel
, “
Motion and deformation of elastic capsules and vesicles in flow
,”
Annu. Rev. Fluid Mech.
48
,
25
(
2016
).
2.
T. W.
Secomb
, “
Blood flow in the microcirculation
,”
Annu. Rev. Fluid Mech.
49
,
443
(
2017
).
3.
J. B.
Freund
, “
Numerical simulation of flowing blood cells
,”
Annu. Rev. Fluid Mech.
46
,
67
(
2014
).
4.
Y.
Zhang
,
J.
Yu
,
H. N.
Bomba
,
Y.
Zhu
, and
Z.
Gu
, “
Mechanical force-triggered drug delivery
,”
Chem. Rev.
116
,
12536
(
2016
).
5.
D.
Barthès-Biesel
, “
Modeling the motion of capsules in flow
,”
Curr. Opin. Colloid Interface Sci.
16
,
3
(
2011
).
6.
D.
Abreu
,
M.
Levant
,
V.
Steinberg
, and
U.
Seifert
, “
Fluid vesicles in flow
,”
Adv. Colloid Interface Sci.
208
,
129
(
2014
).
7.
M. P.
Neubauer
,
M.
Poehlmann
, and
A.
Fery
, “
Microcapsule mechanics: From stability to function
,”
Adv. Colloid Interface Sci.
207
,
65
(
2014
).
8.
Z.
Zhang
,
X.
Chen
, and
J.
Xu
, “
Entry effects of droplet in a micro confinement: Implications for deformation-based circulating tumor cell microfiltration
,”
Biomicrofluidics
9
,
024108
(
2015
).
9.
S. M.
Hosseini
and
J. J.
Feng
, “
How malaria parasites reduce the deformability of infected red blood cells
,”
Biophys. J.
103
,
1
(
2012
).
10.
B.
Kaoui
,
T.
Krüger
, and
J.
Harting
, “
Complex dynamics of a bilamellar vesicle as a simple model for leukocytes
,”
Soft Matter
9
,
8057
(
2013
).
11.
M.
Dabagh
and
A.
Randles
, “
Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature
,”
PLoS One
14
,
e0211418
(
2019
).
12.
S. S.
Datta
,
A.
Abbaspourrad
,
E.
Amstad
,
J.
Fan
,
S.-H.
Kim
,
M.
Romanowsky
,
H. C.
Shum
,
B.
Sun
,
A. S.
Utada
,
M.
Windbergs
,
S.
Zhou
, and
D. A.
Weitz
, “
25th anniversary article: Double emulsion templated solid microcapsules: Mechanics and controlled release
,”
Adv. Mater.
26
,
2205
(
2014
).
13.
Y.
Chen
,
X.
Liu
,
C.
Zhang
, and
Y.
Zhao
, “
Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear
,”
Lab Chip
15
,
1255
(
2015
).
14.
S.
Kim
and
S.
Dabiri
, “
Transient dynamics of eccentric double emulsion droplets in a simple shear flow
,”
Phys. Rev. Fluids
2
,
104305
(
2017
).
15.
Z.
Che
,
Y. F.
Yap
, and
T.
Wang
, “
Flow structure of compound droplets moving in microchannels
,”
Phys. Fluids
30
,
012114
(
2018
).
16.
G.
Li
,
G. R.
Del Hierro
,
J. Z.
Di
, and
Y. Y.
Zuo
, “
Compound drop shape analysis with the Neumann number
,”
Langmuir
36
,
7619
(
2020
).
17.
Z.
Zhang
,
J.
Xu
, and
C.
Drapaca
, “
Particle squeezing in narrow confinements
,”
Microfluid. Nanofluid.
22
,
120
(
2018
).
18.
Q.
Liu
,
S.
Xu
,
Z.
Chen
, and
J.
Wang
, “
Analysis of rheological behaviors of two-dimensional emulsion globules with asymmetric internal structures in modest extensional flows
,”
Phys. Fluids
31
,
042003
(
2019
).
19.
L.
Zhu
and
F.
Gallaire
, “
Bifurcation dynamics of a particle-encapsulating droplet in shear flow
,”
Phys. Rev. Lett.
119
,
064502
(
2017
).
20.
M.
Nooranidoost
,
D.
Izbassarov
,
S.
Tasoglu
, and
M.
Muradoglu
, “
A computational study of droplet-based bioprinting: Effects of viscoelasticity
,”
Phys. Fluids
31
,
081901
(
2019
).
21.
Z. Y.
Luo
,
L.
He
, and
B. F.
Bai
, “
Deformation of spherical compound capsules in simple shear flow
,”
J. Fluid Mech.
775
,
77
(
2015
).
22.
A.
Rahmat
,
M.
Barigou
, and
A.
Alexiadis
, “
Deformation and rupture of compound cells under shear: A discrete multiphysics study
,”
Phys. Fluids
31
,
051903
(
2019
).
23.
S. K.
Veerapaneni
,
Y.-N.
Young
,
P. M.
Vlahovska
, and
J.
Blawzdziewicz
, “
Dynamics of a compound vesicle in shear flow
,”
Phys. Rev. Lett.
106
,
158103
(
2011
).
24.
A.
Pommella
,
S.
Caserta
,
V.
Guida
, and
S.
Guido
, “
Shear-induced deformation of surfactant multilamellar vesicles
,”
Phys. Rev. Lett.
108
,
138301
(
2012
).
25.
M.
Levant
and
V.
Steinberg
, “
Complex dynamics of compound vesicles in linear flow
,”
Phys. Rev. Lett.
112
,
138106
(
2014
).
26.
K. P.
Sinha
and
R. M.
Thaokar
, “
A theoretical study on the dynamics of a compound vesicle in shear flow
,”
Soft Matter
15
,
6994
(
2019
).
27.
T.-W.
Pan
,
S.
Zhao
,
X.
Niu
, and
R.
Glowinski
, “
A DLM/FD/IB method for simulating compound vesicle motion under creeping flow condition
,”
J. Comput. Phys.
300
,
241
(
2015
).
28.
Z. Y.
Luo
and
B. F.
Bai
, “
Dynamics of nonspherical compound capsules in simple shear flow
,”
Phys. Fluids
28
,
101901
(
2016
).
29.
Z. Y.
Luo
and
B. F.
Bai
, “
Dynamics of capsules enclosing viscoelastic fluid in simple shear flow
,”
J. Fluid Mech.
840
,
656
(
2018
).
30.
R.
Skalak
,
A.
Tozeren
,
R. P.
Zarda
, and
S.
Chien
, “
Strain energy function of red blood cell membranes
,”
Biophys. J.
13
,
245
(
1973
).
31.
W.
Helfrich
, “
Elastic properties of lipid bilayers: Theory and possible experiments
,”
Z. Naturforsch., C: J. Biosci.
28
,
693
(
1973
).
32.
A.
Guckenberger
and
S.
Gekle
, “
Theory and algorithms to compute Helfrich bending forces: A review
,”
J. Phys.: Condens. Matter
29
,
203001
(
2017
).
33.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Brownian motion near an elastic cell membrane: A theoretical study
,”
Eur. Phys. J. E
41
,
19
(
2018
).
34.
Y.
Sui
,
Y. T.
Chew
,
P.
Roy
,
X. B.
Chen
, and
H. T.
Low
, “
Transient deformation of elastic capsules in shear flow: Effect of membrane bending stiffness
,”
Phys. Rev. E
75
,
066301
(
2007
).
35.
Z. Y.
Luo
,
X. L.
Shang
, and
B. F.
Bai
, “
Influence of pressure-dependent surface viscosity on dynamics of surfactant-laden drops in shear flow
,”
J. Fluid Mech.
858
,
91
(
2019
).
36.
M.-J.
Ni
,
S.
Komori
, and
N.
Morley
, “
Projection methods for the calculation of incompressible unsteady flows
,”
Numer. Heat Transfer, Part B
44
,
533
(
2003
).
37.
Z. Y.
Luo
,
S. Q.
Wang
,
L.
He
,
F.
Xu
, and
B. F.
Bai
, “
Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow
,”
Soft Matter
9
,
9651
(
2013
).
38.
M.
Zhao
and
P.
Bagchi
, “
Dynamics of microcapsules in oscillating shear flow
,”
Phys. Fluids
23
,
111901
(
2011
).
39.
D.
Cordasco
and
P.
Bagchi
, “
Orbital drift of capsules and red blood cells in shear flow
,”
Phys. Fluids
25
,
091902
(
2013
).
40.
A.
Yazdani
and
P.
Bagchi
, “
Influence of membrane viscosity on capsule dynamics in shear flow
,”
J. Fluid Mech.
718
,
569
(
2013
).
41.
G. I.
Taylor
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. London, Ser. A
146
,
501
(
1934
).
42.
S.
Ramanujan
and
C.
Pozrikidis
, “
Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of fluid viscosities
,”
J. Fluid Mech.
361
,
117
(
1998
).
43.
P.
Bagchi
and
R. M.
Kalluri
, “
Dynamics of nonspherical capsules in shear flow
,”
Phys. Rev. E
80
,
016307
(
2009
).
You do not currently have access to this content.