We consider fluctuations of a magnetic field excited by an external force and advected by isotropic turbulent flow. It appears that non-Gaussian velocity gradient statistics and a finite region of pumping force provide the existence of a stationary solution. The mean-square magnetic field is calculated for arbitrary velocity gradient statistics. An estimate for possible feedback of the magnetic field on velocity shows that, for a wide range of parameters, stationarity without feedback would take place even in the case of intensive pumping of the magnetic field.

1.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Annu. Rev. Fluid Mech.
41
,
375
(
2009
).
2.
R.
Benzi
,
L.
Biferale
,
R.
Fisher
,
D. Q.
Lamb
, and
F.
Toschi
, “
Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence
,”
J. Fluid Mech.
653
,
221
(
2010
).
3.
G.
Boffetta
,
A.
Mazzino
, and
A.
Vulpiani
, “
Twenty-five years of multifractals in fully developed turbulence: A tribute to Giovanni Paladin
,”
J. Phys. A: Math. Theor.
41
,
363001
(
2008
).
4.
G.
Falkovich
,
K.
Gawȩdzki
, and
M.
Vergassola
, “
Particles and fields in fluid turbulence
,”
Rev. Mod. Phys.
73
,
913
(
2001
).
5.
A.
Alexakis
and
L.
Biferale
, “
Cascades and transitions in turbulent flows
,”
Phys. Rep.
767-769
,
1
(
2018
).
6.
B.
Xu
,
Y.
Li
,
X.
Xu
, and
X.
Xu
, “
Quantitative evaluation of passive scalar flow mixing—A review of recent developments
,”
ChemBioEng Rev.
4
(
2
),
120
(
2017
).
7.
A.
Pouquet
,
R.
Marino
,
P. D.
Mininni
, and
D.
Rosenberg
, “
Dual constant-flux energy cascades to both large scales and small scales
,”
Phys. Fluids
29
(
11
),
111108
(
2017
).
8.
H. K.
Moffatt
,
Magnetic Field Generation in Electrically Conducting Fluids
(
Cambridge University Press
,
1978
).
9.
E. N.
Parker
,
Cosmic Magnetic Fields, Their Origin and Activity
(
Clarendon Press
,
Oxford
,
1979
).
10.
F.
Rincon
, “
Dynamo theories
,”
J. Plasma Phys.
85
(
4
),
205850401
(
2019
).
11.
A.
Brandenburg
,
D.
Sokoloff
, and
K.
Subramanian
, “
Current status of turbulent dynamo theory
,”
Space Sci. Rev.
169
,
123
(
2012
).
12.
R. M.
Kulsrud
and
S. W.
Anderson
, “
The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field
,”
Astrophys. J.
396
(
9
),
606
(
1992
).
13.
M.
Chertkov
,
G.
Falkovich
,
I.
Kolokolov
, and
V.
Lebedev
, “
Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: Analytic solution
,”
Phys. Rev. E
51
(
6
),
5609
(
1995
).
14.
E.
Balkovsky
and
A.
Fouxon
, “
Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem
,”
Phys. Rev. E
60
,
4164
(
1999
).
15.
K.
Gawedzki
and
A.
Kupiainen
, “
Anomalous scaling of the passive scalar
,”
Phys. Rev. Lett.
75
,
3834
(
1995
).
16.
N. V.
Antonov
, “
Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field
,”
Phys. Rev. E
60
,
6691
(
1999
).
17.
D.
Banerjee
and
R.
Pandit
, “
Two-dimensional magnetohydrodynamic turbulence with large and small energy-injection length scales
,”
Phys. Fluids
31
(
6
),
065111
(
2019
).
18.
M.
Vergassola
, “
Anomalous scaling for passively advected magnetic fields
,”
Phys. Rev. E
53
(
4
),
R3021
(
1996
).
19.
A. P.
Kazantsev
, “
Enhancement of a magnetic field by a conducting fluid
,”
Zh. Eksp. Teor. Fiz.
53
,
1806
(
1967
).
A. P.
Kazantsev
,
[
Sov. Phys. JETP
26
(
9
),
1031
(
1968
)]; available at http://www.jetp.ac.ru/cgi-bin/e/index/e/26/5/p1031?a=list.
20.
M.
Chertkov
,
G.
Falkovich
,
I.
Kolokolov
, and
M.
Vergassola
, “
Small-scale turbulent dynamo
,”
Phys. Rev. Lett.
83
,
4065
(
1999
).
21.
Y. B.
Zel’dovich
,
A. A.
Ruzmaikin
,
S. A.
Molchanov
, and
D. D. J.
Sokoloff
, “
Kinematic dynamo problem in a linear velocity field
,”
J. Fluid Mech
144
,
1
(
1984
).
22.
A. S.
Il’yn
,
V. A.
Sirota
, and
K. P.
Zybin
, “
Small-scale turbulent magnetic field: Growth vs. decay
,”
Europhys. Lett.
121
,
34002
(
2018
).
23.
A. V.
Kopyev
,
A. S.
Il’yn
,
V. A.
Sirota
, and
K. P.
Zybin
, “
Stationary scaling in small-scale turbulent dynamo problem
,”
Phys. Rev. E
101
,
063102
(
2020
).
24.
V. I.
Belinicher
and
V. S.
L’vov
, “
A scale-invariant theory of fully developed hydrodynamic turbulence
,”
Sov. Phys. JETP
66
,
303
(
1987
).
V. I.
Belinicher
and
V. S.
L’vov
, [
Zh. Eksp. Teor. Fiz.
93
,
533
(
1987
) (in Russian)]; available at http://www.jetp.ac.ru/cgi-bin/e/index/e/66/2/p303?a=list.
25.
G. K.
Batchelor
, “
Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity
,”
J. Fluid Mech.
5
,
113
(
1959
).
26.
V. I.
Oseledets
, “
A multiplicative ergodic theorem. Liapunov characteristic number for dynamical systems
,”
Trans. Moscow Math. Soc.
19
,
197
231
(
1968
).
V. I.
Oseledets
, [
Moscov. Mat. Obsch.
19
,
179
(
1968
) (in Russian)]: available at http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mmo&paperid=214&option_lang=eng.
27.
A. V.
Letchikov
, “
Products of unimodular independent random matrices
,”
Russ. Math. Surv.
51
,
49
(
1996
).
28.
A. S.
Il’yn
,
V. A.
Sirota
, and
K. P.
Zybin
, “
Statistical properties of the T-exponential of isotropically distributed random matrices
,”
J. Stat. Phys.
163
,
765
(
2016
).
29.
A. S.
Il’yn
,
V. A.
Sirota
, and
K. P.
Zybin
, “
Infinite products of random isotropically distributed matrices
,”
J. Stat. Phys.
166
,
24
(
2017
).
30.
V. I.
Klyatskin
,
Dynamics of Stochastic Systems
(
Elsevier
,
2005
).
31.
S. R. S.
Varadhan
, “
Large deviations
,”
Ann. Probab.
36
(
2
),
397
(
2008
).
32.
S. S.
Girimaji
and
S. B.
Pope
, “
Material-element deformation in isotropic turbulence
,”
J. Fluid Mech.
220
,
427
(
1990
).
33.
A. S.
Il’yn
and
K. P.
Zybin
, “
Material deformation tensor in time-reversal symmetry breaking turbulence
,”
Phys. Lett. A
379
,
650
(
2015
).
You do not currently have access to this content.