We consider fluctuations of a magnetic field excited by an external force and advected by isotropic turbulent flow. It appears that non-Gaussian velocity gradient statistics and a finite region of pumping force provide the existence of a stationary solution. The mean-square magnetic field is calculated for arbitrary velocity gradient statistics. An estimate for possible feedback of the magnetic field on velocity shows that, for a wide range of parameters, stationarity without feedback would take place even in the case of intensive pumping of the magnetic field.
REFERENCES
1.
F.
Toschi
and E.
Bodenschatz
, “Lagrangian properties of particles in turbulence
,” Annu. Rev. Fluid Mech.
41
, 375
(2009
).2.
R.
Benzi
, L.
Biferale
, R.
Fisher
, D. Q.
Lamb
, and F.
Toschi
, “Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence
,” J. Fluid Mech.
653
, 221
(2010
).3.
G.
Boffetta
, A.
Mazzino
, and A.
Vulpiani
, “Twenty-five years of multifractals in fully developed turbulence: A tribute to Giovanni Paladin
,” J. Phys. A: Math. Theor.
41
, 363001
(2008
).4.
G.
Falkovich
, K.
Gawȩdzki
, and M.
Vergassola
, “Particles and fields in fluid turbulence
,” Rev. Mod. Phys.
73
, 913
(2001
).5.
A.
Alexakis
and L.
Biferale
, “Cascades and transitions in turbulent flows
,” Phys. Rep.
767-769
, 1
(2018
).6.
B.
Xu
, Y.
Li
, X.
Xu
, and X.
Xu
, “Quantitative evaluation of passive scalar flow mixing—A review of recent developments
,” ChemBioEng Rev.
4
(2
), 120
(2017
).7.
A.
Pouquet
, R.
Marino
, P. D.
Mininni
, and D.
Rosenberg
, “Dual constant-flux energy cascades to both large scales and small scales
,” Phys. Fluids
29
(11
), 111108
(2017
).8.
H. K.
Moffatt
, Magnetic Field Generation in Electrically Conducting Fluids
(Cambridge University Press
, 1978
).9.
E. N.
Parker
, Cosmic Magnetic Fields, Their Origin and Activity
(Clarendon Press
, Oxford
, 1979
).10.
F.
Rincon
, “Dynamo theories
,” J. Plasma Phys.
85
(4
), 205850401
(2019
).11.
A.
Brandenburg
, D.
Sokoloff
, and K.
Subramanian
, “Current status of turbulent dynamo theory
,” Space Sci. Rev.
169
, 123
(2012
).12.
R. M.
Kulsrud
and S. W.
Anderson
, “The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field
,” Astrophys. J.
396
(9
), 606
(1992
).13.
M.
Chertkov
, G.
Falkovich
, I.
Kolokolov
, and V.
Lebedev
, “Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: Analytic solution
,” Phys. Rev. E
51
(6
), 5609
(1995
).14.
E.
Balkovsky
and A.
Fouxon
, “Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem
,” Phys. Rev. E
60
, 4164
(1999
).15.
K.
Gawedzki
and A.
Kupiainen
, “Anomalous scaling of the passive scalar
,” Phys. Rev. Lett.
75
, 3834
(1995
).16.
N. V.
Antonov
, “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field
,” Phys. Rev. E
60
, 6691
(1999
).17.
D.
Banerjee
and R.
Pandit
, “Two-dimensional magnetohydrodynamic turbulence with large and small energy-injection length scales
,” Phys. Fluids
31
(6
), 065111
(2019
).18.
M.
Vergassola
, “Anomalous scaling for passively advected magnetic fields
,” Phys. Rev. E
53
(4
), R3021
(1996
).19.
A. P.
Kazantsev
, “Enhancement of a magnetic field by a conducting fluid
,” Zh. Eksp. Teor. Fiz.
53
, 1806
(1967
).A. P.
Kazantsev
,[Sov. Phys. JETP
26
(9
), 1031
(1968
)]; available at http://www.jetp.ac.ru/cgi-bin/e/index/e/26/5/p1031?a=list.20.
M.
Chertkov
, G.
Falkovich
, I.
Kolokolov
, and M.
Vergassola
, “Small-scale turbulent dynamo
,” Phys. Rev. Lett.
83
, 4065
(1999
).21.
Y. B.
Zel’dovich
, A. A.
Ruzmaikin
, S. A.
Molchanov
, and D. D. J.
Sokoloff
, “Kinematic dynamo problem in a linear velocity field
,” J. Fluid Mech
144
, 1
(1984
).22.
A. S.
Il’yn
, V. A.
Sirota
, and K. P.
Zybin
, “Small-scale turbulent magnetic field: Growth vs. decay
,” Europhys. Lett.
121
, 34002
(2018
).23.
A. V.
Kopyev
, A. S.
Il’yn
, V. A.
Sirota
, and K. P.
Zybin
, “Stationary scaling in small-scale turbulent dynamo problem
,” Phys. Rev. E
101
, 063102
(2020
).24.
V. I.
Belinicher
and V. S.
L’vov
, “A scale-invariant theory of fully developed hydrodynamic turbulence
,” Sov. Phys. JETP
66
, 303
(1987
).V. I.
Belinicher
and V. S.
L’vov
, [Zh. Eksp. Teor. Fiz.
93
, 533
(1987
) (in Russian)]; available at http://www.jetp.ac.ru/cgi-bin/e/index/e/66/2/p303?a=list.25.
G. K.
Batchelor
, “Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity
,” J. Fluid Mech.
5
, 113
(1959
).26.
V. I.
Oseledets
, “A multiplicative ergodic theorem. Liapunov characteristic number for dynamical systems
,” Trans. Moscow Math. Soc.
19
, 197
–231
(1968
).V. I.
Oseledets
, [Moscov. Mat. Obsch.
19
, 179
(1968
) (in Russian)]: available at http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mmo&paperid=214&option_lang=eng.27.
A. V.
Letchikov
, “Products of unimodular independent random matrices
,” Russ. Math. Surv.
51
, 49
(1996
).28.
A. S.
Il’yn
, V. A.
Sirota
, and K. P.
Zybin
, “Statistical properties of the T-exponential of isotropically distributed random matrices
,” J. Stat. Phys.
163
, 765
(2016
).29.
A. S.
Il’yn
, V. A.
Sirota
, and K. P.
Zybin
, “Infinite products of random isotropically distributed matrices
,” J. Stat. Phys.
166
, 24
(2017
).30.
31.
S. R. S.
Varadhan
, “Large deviations
,” Ann. Probab.
36
(2
), 397
(2008
).32.
S. S.
Girimaji
and S. B.
Pope
, “Material-element deformation in isotropic turbulence
,” J. Fluid Mech.
220
, 427
(1990
).33.
A. S.
Il’yn
and K. P.
Zybin
, “Material deformation tensor in time-reversal symmetry breaking turbulence
,” Phys. Lett. A
379
, 650
(2015
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.