Scale-resolving simulations of the turbulent wake behind a square cylinder are performed at Re = 22 000 using the partially averaged Navier–Stokes (PANS) k-ω closure model at different degrees of resolution (cut-off scales) corresponding to the unresolved-to-total kinetic energy ratio fk ∈ [0.10, 0.50]. The two principle objectives of the study are to (i) establish the degree of resolution required for an accurate computation of different quantities of interest ranging from flow statistics to coherent structures and (ii) develop a protocol for a quantitative assessment and comparison of the large-scale coherent structures simulated at different degrees of resolution. Straightforward use of proper orthogonal decomposition (POD) to assess and compare large-scale coherence at different resolution levels can prove difficult as small-scale features can affect the POD mode shape and amplitude. To overcome this difficulty, two methods of quantifying coherent structures in the wake are proposed. These methods are based upon the incorporation of Fourier and Chebyshev decompositions with spectral proper orthogonal decomposition, respectively. We examine the first-mode energy spectra and the corresponding streamwise mode shapes using the results generated from PANS simulations at different degrees of resolution. It is demonstrated that increasingly finer resolutions are needed for integral quantities, one-point statistics, frequency spectra, and coherent structures, in that order. The underlying physics is explicated.

1.
S. S.
Girimaji
, “
Partially averaged Navier–Stokes (PANS) approach: A RANS to LES bridging model
,”
APS
56
,
EC.001
(
2003
), see https://ui.adsabs.harvard.edu/abs/2003APS..DFD.EC001G.
2.
S. S.
Girimaji
, “
Partially-averaged Navier-Stokes model for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method
,”
J. Appl. Mech.
73
,
413
421
(
2005
).
3.
S. S.
Girimaji
,
E.
Jeong
, and
R.
Srinivasan
, “
Partially averaged Navier-Stokes method for turbulence: Fixed point analysis and comparison with unsteady partially averaged Navier-Stokes
,”
J. Appl. Mech.
73
,
422
429
(
2005
).
4.
R.
Schiestel
and
A.
Dejoan
, “
Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations
,”
Theor. Comput. Fluid Dyn.
18
,
443
468
(
2005
).
5.
S.
Singha
,
K. K.
Nagarajan
, and
K. P.
Sinhamahapatra
, “
Numerical study of two-dimensional flow around two side-by-side circular cylinders at low Reynolds numbers
,”
Phys. Fluids
28
,
053603
(
2016
).
6.
T. K.
Sengupta
and
A.
Gullapalli
, “
Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate
,”
Phys. Fluids
28
,
114107
(
2016
).
7.
X.
Ma
and
A.
Schröder
, “
Analysis of flapping motion of reattaching shear layer behind a two-dimensional backward-facing step
,”
Phys. Fluids
29
,
115104
(
2017
).
8.
F.
Wang
and
K. M.
Lam
, “
Geometry effects on mean wake topology and large-scale coherent structures of wall-mounted prisms
,”
Phys. Fluids
31
,
125109
(
2019
).
9.
A.
Desai
,
S.
Mittal
, and
S.
Mittal
, “
Experimental investigation of vortex shedding past a circular cylinder in the high subcritical regime
,”
Phys. Fluids
32
,
014105
(
2020
).
10.
Y.
Fan
,
C.
Xia
,
S.
Chu
,
Z.
Yang
, and
O.
Cadot
, “
Experimental and numerical analysis of the bi-stable turbulent wake of a rectangular flat-backed bluff body
,”
Phys. Fluids
32
,
105111
(
2020
).
11.
A.
Towne
,
O. T.
Schmidt
, and
T.
Colonius
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
(
2018
).
12.
M.
Germano
, “
Turbulence: The filtering approach
,”
J. Fluid Mech.
238
,
325
336
(
1992
).
13.
S.
Lakshmipathy
and
S. S.
Girimaji
, “
Partially-averaged Navier-Stokes method for turbulent flows: K-ω model implementation
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nevada
(
AIAA
,
Reston, VA
,
2006
), p.
119
, see https://arc.aiaa.org/doi/10.2514/6.2006-119.
14.
D. C.
Wilcox
, “
Reassessment of the scale-determining equation for advanced turbulence models
,”
AIAA J.
26
,
1299
1310
(
1988
).
15.
E.
Jeong
and
S.
Girimaji
, “
Partially averaged Navier–Stokes (PANS) method for turbulence simulations—Flow past a square cylinder
,”
J. Fluids Eng.
132
,
121203
(
2010
).
16.
D. A.
Reyes
,
J. M.
Cooper
, and
S. S.
Girimaji
, “
Characterizing velocity fluctuations in partially resolved turbulence simulations
,”
Phys. Fluids
26
,
085106
(
2014
).
17.
F. S.
Pereira
,
L.
Eça
,
G.
Vaz
, and
S. S.
Girimaji
, “
Challenges in scale-resolving simulations of turbulent wake flows with coherent structures
,”
J. Comput. Phys.
363
,
98
115
(
2018
).
18.
S. S.
Girimaji
and
K. S.
Abdol-Hamid
, “
Partially-averaged Navier Stokes model for turbulence: Implementation and validation
,” in
43rd AIAA Aerospace Sciences Meeting and Exhibit, 10–13 January 2005, Reno, Nevada
(
AIAA
,
Reston, VA
,
2005
), p.
502
.
19.
Y.
Qian
,
T.
Wang
,
Y.
Yuan
, and
Y.
Zhang
, “
Comparative study on wind turbine wakes using a modified partially-averaged Navier-Stokes method and large eddy simulation
,”
Energy
206
,
118147
(
2020
).
20.
R. E.
Bensow
and
M.
van den Boogaard
, “
Using a PANS simulation approach for the transient flow around the Japan Bulk Carrier
,”
J. Ship Res.
63
,
123
129
(
2019
).
21.
J.
Zhang
,
G.
Minelli
,
A. N.
Rao
,
B.
Basara
,
R.
Bensow
, and
S.
Krajnović
, “
Comparison of PANS and LES of the flow past a generic ship
,”
Ocean Eng.
165
,
221
236
(
2018
).
22.
B.
Ji
,
X.
Luo
,
Y.
Wu
,
X.
Peng
, and
H.
Xu
, “
Partially-averaged Navier–Stokes method with modified K–ε model for cavitating flow around a marine propeller in a non-uniform wake
,”
Int. J. Heat Mass Transfer
55
,
6582
6588
(
2012
).
23.
S.
Krajnović
,
R.
Lárusson
, and
B.
Basara
, “
Superiority of PANS compared to LES in predicting a rudimentary landing gear flow with affordable meshes
,”
Int. J. Heat Fluid Flow
37
,
109
122
(
2012
).
24.
A. N.
Rao
,
G.
Minelli
,
J.
Zhang
,
B.
Basara
, and
S.
Krajnović
, “
Investigation of the near-wake flow topology of a simplified heavy vehicle using PANS simulations
,”
J. Wind Eng. Ind. Aerodyn.
183
,
243
272
(
2018
).
25.
A.
Rao
,
G.
Minelli
,
B.
Basara
, and
S.
Krajnović
, “
On the two flow states in the wake of a hatchback Ahmed body
,”
J. Wind Eng. Ind. Aerodyn.
173
,
262
278
(
2018
).
26.
J.
Tschepe
,
D.
Fischer
,
C. N.
Nayeri
,
C. O.
Paschereit
, and
S.
Krajnovic
, “
Investigation of high-speed train drag with towing tank experiments and CFD
,”
Flow, Turbul. Combust.
102
,
417
434
(
2019
).
27.
F. S.
Pereira
,
G.
Vaz
,
L.
Eça
, and
S. S.
Girimaji
, “
Simulation of the flow around a circular cylinder at Re = 3900 with Partially-averaged Navier-Stokes equations
,”
Int. J. Heat Fluid Flow
69
,
234
246
(
2018
).
28.
F. S.
Pereira
,
L.
Eça
,
G.
Vaz
, and
S. S.
Girimaji
, “
On the simulation of the flow around a circular cylinder at Re = 140 000
,”
Int. J. Heat Fluid Flow
76
,
40
56
(
2019
).
29.
D.
Luo
,
C.
Yan
,
H.
Liu
, and
R.
Zhao
, “
Comparative assessment of PANS and DES for simulation of flow past a circular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
134
,
65
77
(
2014
).
30.
B.
Basara
,
Z.
Pavlovic
, and
S.
Girimaji
, “
A new approach for the calculation of the cut-off resolution parameter in bridging methods for turbulent flow simulation
,”
Int. J. Heat Fluid Flow
74
,
76
88
(
2018
).
31.
A.
Chakraborty
and
H.
Warrior
, “
Study of turbulent flow past a square cylinder using partially-averaged Navier-Stokes method in OpenFOAM
,”
Proc. Inst. Mech. Eng., Part C
234
,
2821
2832
(
2020
).
32.
P.
Ranjan
and
A.
Dewan
, “
A PANS study of fluid flow and heat transfer from a square cylinder approaching a plane wall
,”
Int. J. Therm. Sci.
120
,
321
336
(
2017
).
33.
P.
Ranjan
and
A.
Dewan
, “
Effect of side ratio on fluid flow and heat transfer from rectangular cylinders using the PANS method
,”
Int. J. Heat Fluid Flow
61
,
309
322
(
2016
).
34.
P.
Ranjan
and
A.
Dewan
, “
Partially averaged Navier Stokes simulation of turbulent heat transfer from a square cylinder
,”
Int. J. Heat Mass Transfer
89
,
251
266
(
2015
).
35.
C.-S.
Song
and
S.-O.
Park
, “
Numerical simulation of flow past a square cylinder using partially-averaged Navier–Stokes model
,”
J. Wind Eng. Ind. Aerodyn.
97
,
37
47
(
2009
).
36.
C.
Kamble
and
S.
Girimaji
, “
Characterization of coherent structures in turbulent wake of a sphere using partially averaged Navier–Stokes (PANS) simulations
,”
Phys. Fluids
32
,
105110
(
2020
).
37.
C.
Brun
,
S.
Aubrun
,
T.
Goossens
, and
P.
Ravier
, “
Coherent structures and their frequency signature in the separated shear layer on the sides of a square cylinder
,”
Flow, Turbul. Combust.
81
,
97
114
(
2008
).
38.
W.
Rodi
, “
Comparison of LES and RANS calculations of the flow around bluff bodies
,”
J. Wind Eng. Ind. Aerodyn.
69-71
,
55
75
(
1997
).
39.
R. W. C. P.
Verstappen
and
A. E. P.
Veldman
, “
Spectro-consistent discretization of Navier-Stokes: A challenge to RANS and LES
,”
J. Eng. Math.
34
,
163
179
(
1998
).
40.
A.
Sohankar
,
L.
Davidson
, and
C.
Norberg
, “
Large eddy simulation of flow past a square cylinder: Comparison of different subgrid scale models
,”
J. Fluids Eng.
122
,
39
47
(
1999
).
41.
C.
Fureby
,
G.
Tabor
,
H. G.
Weller
, and
A. D.
Gosman
, “
Large eddy simulations of the flow around a square prism
,”
AIAA J.
38
,
442
452
(
2000
).
42.
M.
Minguez
,
C.
Brun
,
R.
Pasquetti
, and
E.
Serre
, “
Experimental and high-order LES analysis of the flow in near-wall region of a square cylinder
,”
Int. J. Heat Fluid Flow
32
,
558
566
(
2011
), part of the Special Issue: 8th International Symposium on Engineering Turbulence Modelling and Measurements, Marseille, France, June 9–11, 2010.
43.
F. X.
Trias
,
A.
Gorobets
, and
A.
Oliva
, “
Turbulent flow around a square cylinder at Reynolds number 22 000: A DNS study
,”
Comput. Fluids
123
,
87
98
(
2015
).
44.
Y.
Cao
and
T.
Tamura
, “
Large-eddy simulations of flow past a square cylinder using structured and unstructured grids
,”
Comput. Fluids
137
,
36
54
(
2016
).
45.
Y.
Cao
,
T.
Tamura
, and
H.
Kawai
, “
Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder
,”
Comput. Fluids
196
,
104320
(
2020
).
46.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
47.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
(
1998
).
48.
R. I.
Issa
, “
Solution of the implicitly discretised fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
,
40
65
(
1986
).
49.
F. M.
White
,
Fluid Mechanics
, 5th ed. (
McGraw-Hill
,
New York
,
2003
).
50.
J.
Ochoa
and
N.
Fueyo
, “
Large eddy simulation of the flow past a square cylinder
,” PHOENICS 10th International User Conference, Melbourne, Australia, CHAM Limited, London (
2004
), see http://www.cham.co.uk/phoenics/d_polis/d_applic/recapps/les/lesfueyo.pdf.
51.
B. W.
van Oudheusden
,
F.
Scarano
,
N. P.
van Hinsberg
, and
E. W. M.
Roosenboom
, “
Quantitative visualization of the flow around a square-section cylinder at incidence
,”
J. Wind Eng. Ind. Aerodyn.
96
,
913
922
(
2008
).
52.
D. A.
Lyn
,
S.
Einav
,
W.
Rodi
, and
J.-H.
Park
, “
A laser-doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder
,”
J. Fluid Mech.
304
,
285
319
(
1995
).
53.
P.
Meliga
,
O.
Cadot
, and
E.
Serre
, “
Experimental and theoretical sensitivity analysis of turbulent flow past a square cylinder
,”
Flow, Turbul. Combust.
97
,
987
1015
(
2016
).
54.
S. C.
Yen
and
C. W.
Yang
, “
Flow patterns and vortex shedding behavior behind a square cylinder
,”
J. Wind Eng. Ind. Aerodyn.
99
,
868
878
(
2011
).
55.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,” in
Atmospheric Turbulence and Radio Wave Propagation
(
Nauka, Moscow
,
1967
), pp.
166
178
.
56.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
57.
K.
Taira
,
S. L.
Brunton
,
S. T. M.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
58.
B.
Podvin
and
Y.
Fraigneau
, “
A few thoughts on proper orthogonal decomposition in turbulence
,”
Phys. Fluids
29
,
020709
(
2017
).
59.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I. Coherent structures
,”
Q. Appl. Math.
45
,
561
571
(
1987
).
60.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
73
(
1967
).
61.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
62.
J. H.
Citriniti
and
W. K.
George
, “
Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition
,”
J. Fluid Mech.
418
,
137
166
(
2000
).
63.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
New York
,
2001
).
64.
C.
Norberg
, “
Flow around rectangular cylinders: Pressure forces and wake frequencies
,”
J. Wind Eng. Ind. Aerodyn.
49
,
187
196
(
1993
).
65.
D. F. G.
Durão
,
M. V.
Heitor
, and
J. C. F.
Pereira
, “
Measurements of turbulent and periodic flows around a square cross-section cylinder
,”
Exp. Fluids
6
,
298
304
(
1988
).
66.
A.
Okajima
, “
Strouhal numbers of rectangular cylinders
,”
J. Fluid Mech.
123
,
379
398
(
1982
).
67.
S. C.
Luo
,
M. G.
Yazdani
,
Y. T.
Chew
, and
T. S.
Lee
, “
Effects of incidence and afterbody shape on flow past bluff cylinders
,”
J. Wind Eng. Ind. Aerodyn.
53
,
375
399
(
1994
).
You do not currently have access to this content.