Scale-resolving simulations of the turbulent wake behind a square cylinder are performed at Re = 22 000 using the partially averaged Navier–Stokes (PANS) k-ω closure model at different degrees of resolution (cut-off scales) corresponding to the unresolved-to-total kinetic energy ratio fk ∈ [0.10, 0.50]. The two principle objectives of the study are to (i) establish the degree of resolution required for an accurate computation of different quantities of interest ranging from flow statistics to coherent structures and (ii) develop a protocol for a quantitative assessment and comparison of the large-scale coherent structures simulated at different degrees of resolution. Straightforward use of proper orthogonal decomposition (POD) to assess and compare large-scale coherence at different resolution levels can prove difficult as small-scale features can affect the POD mode shape and amplitude. To overcome this difficulty, two methods of quantifying coherent structures in the wake are proposed. These methods are based upon the incorporation of Fourier and Chebyshev decompositions with spectral proper orthogonal decomposition, respectively. We examine the first-mode energy spectra and the corresponding streamwise mode shapes using the results generated from PANS simulations at different degrees of resolution. It is demonstrated that increasingly finer resolutions are needed for integral quantities, one-point statistics, frequency spectra, and coherent structures, in that order. The underlying physics is explicated.
Skip Nav Destination
Article navigation
December 2020
Research Article|
December 02 2020
Partially-averaged Navier–Stokes simulations of turbulent flow past a square cylinder: Comparative assessment of statistics and coherent structures at different resolutions
Thomas S. Fowler, IV
;
Thomas S. Fowler, IV
a)
1
Aerospace Engineering Department, Texas A&M University
, College Station, Texas 77840, USA
a)Author to whom correspondence should be addressed: https://tsfowler@tamu.edu
Search for other works by this author on:
Freddie D. Witherden;
2
Ocean Engineering Department, Texas A&M University
, College Station, Texas 77840, USA
Search for other works by this author on:
Sharath S. Girimaji
2
Ocean Engineering Department, Texas A&M University
, College Station, Texas 77840, USA
Search for other works by this author on:
a)Author to whom correspondence should be addressed: https://tsfowler@tamu.edu
b)
Electronic mail: fdw@tamu.edu
c)
Electronic mail: girimaji@tamu.edu
Physics of Fluids 32, 125106 (2020)
Article history
Received:
August 31 2020
Accepted:
November 04 2020
Citation
Thomas S. Fowler, Freddie D. Witherden, Sharath S. Girimaji; Partially-averaged Navier–Stokes simulations of turbulent flow past a square cylinder: Comparative assessment of statistics and coherent structures at different resolutions. Physics of Fluids 1 December 2020; 32 (12): 125106. https://doi.org/10.1063/5.0027590
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00