This study focuses on analyzing the effects of traveling modes on the boundary layer flow over a rotating cone in a still fluid system. Non-stationary modes are known to manifest in the boundary layer of rotating cones with highly polished, very smooth surfaces. In this paper, only the broad rotating cone (defined as a cone with the half angle ψ ≥ 40°) system is considered. An asymptotic analytical method is used to solve the governing equations and output the waveangle and wavenumber of the system. This is then compared to a numerical formulation that uses a Chebyshev spectral method. The resulting solutions show that increasing the wave frequency destabilizes the system with a much stronger destabilization for the viscous wall type II modes than the inviscid cross-flow type I modes, where the type I mode is the dominant mode seen in experiments. This result suggests that a slower frequency wave should be selected in order to increase the stability of the system. It was also observed that the negative frequency values have a minimum of the critical Reynolds number values for each cone half angle. It also shows that there is a comparison limit for high frequency positive values. After this, an energy balance analysis is conducted to see the effect on the total mechanical energy transferred between the basic flow and the perturbation quantities. This showed that as the frequency of the traveling modes increases, the energy transferred decreases.

1.
M.
Turkyilmazoglu
, “
Convective and absolute instabilities in the incompressible boundary layer on a rotating disk
,”
Hacettepe J. Math. Stat.
35
,
117
146
(
2006
).
2.
S. J.
Garrett
,
Z.
Hussain
, and
S. O.
Stephen
, “
The cross-flow instability of the boundary layer on a rotating cone
,”
J. Fluid Mech.
622
,
209
232
(
2009
).
3.
Z.
Hussain
,
S. J.
Garrett
, and
S. O.
Stephen
, “
The instability of the boundary layer over a disk rotating in an enforced axial flow
,”
Phys. Fluids
23
,
114108
(
2011
).
4.
L.
Mack
, “
The wave pattern produced by a point source on a rotating disk
,” in
23rd Aerospace Sciences Meeting
(
AIAA
,
1985
), p.
490
.
5.
R. J.
Lingwood
, “
An experimental study of absolute instability of the rotating-disk boundary-layer flow
,”
J. Fluid Mech.
314
,
373
405
(
1996
).
6.
B. I.
Fedorov
,
G. Z.
Plavnik
,
I. V.
Prokhorov
, and
L. G.
Zhukhovitskii
, “
Transitional flow conditions on a rotating disk
,”
J. Eng. Phys.
31
,
1448
1453
(
1976
).
7.
M.
Turkyilmazoglu
and
J.
Gajjar
, “
Absolute and convective instability in the incompressible boundary layer on a rotating disk
,” Report No. CLSCM CLSCM-1998-002,
University of Manchester
,
1998
.
8.
M. R.
Malik
, “
The neutral curve for stationary disturbances in rotating-disk flow
,”
J. Fluid Mech.
164
,
275
287
(
1986
).
9.
P.
Hall
, “
An asymptotic investigation of the stationary modes of instability of the boundary layer on a rotating disc
,”
Proc. R. Soc. London, Ser. A
406
,
93
106
(
1986
).
10.
P.
Balakumar
and
M. R.
Malik
, “
Traveling disturbances in rotating-disk flow
,”
Theor. Comput. Fluid Dyn.
2
,
125
137
(
1990
).
11.
M.
Turkyilmazoglu
, “
Non-linear and non-stationary modes of the lower branch of the incompressible boundary layer flow due to a rotating disk
,”
Q. Appl. Math.
65
,
43
68
(
2007
).
12.
Z.
Hussain
, “
Stability and transition of three-dimensional rotating boundary layers
,” Ph.D. thesis,
University of Birmingham
,
2010
.
13.
R.
Kobayashi
and
H.
Izumi
, “
Boundary-layer transition on a rotating cone in still fluid
,”
J. Fluid Mech.
127
,
353
364
(
1983
).
14.
K.
Kato
,
P. H.
Alfredsson
, and
R.
Lingwood
, “
Boundary-layer transition over a rotating broad cone
,”
Phys. Rev. Fluids
4
,
071902
(
2019
).
15.
S.
Tambe
,
F.
Schrijer
,
A. G.
Rao
, and
L.
Veldhuis
, “
Coherent vortex structures over a rotating spinner under non-axial inflows at low Reynolds number
,” in
54th 3AF International Conference on Applied Aerodynamics
(
TU Delft
,
2019
).
16.
S.
Tambe
,
F.
Schrijer
,
A. G.
Rao
, and
L.
Veldhuis
, “
An experimental method to investigate coherent spiral vortices in the boundary layer over rotating bodies of revolution
,”
Exp. Fluids
60
,
115
(
2019
).
17.
S. J.
Garrett
and
N.
Peake
, “
The absolute instability of the boundary layer on a rotating cone
,”
Eur. J. Mech.
26
,
344
353
(
2007
).
18.
C.
Thomas
and
C.
Davies
, “
Global linear instability of rotating-cone boundary layers in a quiescent medium
,”
Phys. Rev. Fluids
4
,
043902
(
2019
).
19.
S. J.
Garrett
, “
Linear growth rates of types I and II convective modes within the rotating-cone boundary layer
,”
Fluid Dyn. Res.
42
,
025504
(
2009
).
20.
A. J.
Cooper
and
P. W.
Carpenter
, “
The stability of rotating-disc boundary-layer flow over a compliant wall. Part 1. Type I and II instabilities
,”
J. Fluid Mech.
350
,
231
259
(
1997
).
21.
A. J.
Cooper
,
J. H.
Harris
,
S. J.
Garrett
,
M.
Özkan
, and
P. J.
Thomas
, “
The effect of anisotropic and isotropic roughness on the convective stability of the rotating disk boundary layer
,”
Phys. Fluids
27
,
014107
(
2015
).
22.
R.
Miller
,
P. T.
Griffiths
,
Z.
Hussain
, and
S. J.
Garrett
, “
On the stability of a heated rotating-disk boundary layer in a temperature-dependent viscosity fluid
,”
Phys. Fluids
32
,
024105
(
2020
).
23.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
Courier Corporation
,
1965
), Vol. 55.
24.
Z.
Hussain
,
S. O.
Stephen
, and
S. J.
Garrett
, “
The centrifugal instability of a slender rotating cone
,”
J. Algorithms Comput. Technol.
6
,
113
128
(
2012
).
25.
Z.
Hussain
,
S. J.
Garrett
, and
S. O.
Stephen
, “
The centrifugal instability of the boundary-layer flow over slender rotating cones
,”
J. Fluid Mech.
755
,
274
293
(
2014
).
26.
Z.
Hussain
,
S. J.
Garrett
,
S. O.
Stephen
, and
P. T.
Griffiths
, “
The centrifugal instability of the boundary-layer flow over a slender rotating cone in an enforced axial free stream
,”
J. Fluid Mech.
788
,
70
94
(
2016
).
You do not currently have access to this content.