We report on two- and three-dimensional numerical simulations of Rayleigh–Taylor instabilities in immiscible fluids. A diffuse-interface model that combines the Cahn–Hilliard equation, governing the evolution of the volume fraction of one fluid, and the Navier–Stokes equations, governing the bulk velocity and pressure, is used. The study is limited to low Atwood numbers owing to the use of the Boussinesq approximation. The code is based on a pseudo-spectral method. A linear analysis is first performed in a two-dimensional case of Rayleigh–Taylor instability to confirm that the model very well captures this phenomenon in the case of inviscid or viscid fluids. One key aspect of this work is that the influence of the thermodynamic parameters related to the Cahn–Hilliard equation (interface thickness and mobility) is quantitively studied. Three-dimensional results of Rayleigh–Taylor instabilities in viscous fluids are then presented to show the possibilities of this modeling. We observe the effect of the viscosity and the wavelength of an initial single-mode perturbation on the mass transport during the nonlinear regime.

1.
D. H.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Physica D
12
,
3
18
(
1984
).
2.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720-722
,
1
136
(
2017
).
3.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
,”
Proc. R. Soc. London, Ser. A
201
,
192
196
(
1950
).
4.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Clarendon Press
,
1961
).
5.
R.
Menikoff
,
R. C.
Mjolsness
,
D. H.
Sharp
, and
C.
Zemach
, “
Unstable normal mode for Rayleigh-Taylor instability in viscous fluids
,”
Phys. Fluids
20
,
2000
2004
(
1977
).
6.
D. J.
Lewis
and
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II
,”
Proc. R. Soc. London, Ser. A
202
,
81
96
(
1950
).
7.
J. T.
Waddell
,
C. E.
Niederhaus
, and
J. W.
Jacobs
, “
Experimental study of Rayleigh-Taylor instability: Low Atwood number liquid systems with single-mode initial perturbations
,”
Phys. Fluids
13
,
1263
1273
(
2001
).
8.
J. P.
Wilkinson
and
J. W.
Jacobs
, “
Experimental study of the single-mode three-dimensional Rayleigh-Taylor instability
,”
Phys. Fluids
19
,
124102
(
2007
).
9.
D.
Oron
,
L.
Arazi
,
D.
Kartoon
,
A.
Rikanati
,
U.
Alon
, and
D.
Shvarts
, “
Dimensionality dependence of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws
,”
Phys. Plasmas
8
,
2883
2889
(
2001
).
10.
V. N.
Goncharov
, “
Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers
,”
Phys. Rev. Lett.
88
,
134502
(
2002
).
11.
Y.-N.
Young
and
F. E.
Ham
, “
Surface tension in incompressible Rayleigh-Taylor mixing flow
,”
J. Turbulence
7
,
1
23
(
2006
).
12.
S.-I.
Sohn
, “
Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities
,”
Phys. Rev. E
80
,
055302
(
2009
).
13.
P.
Ramaprabhu
,
G.
Dimonte
,
Y.-N.
Young
,
A. C.
Calder
, and
B.
Fryxell
, “
Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem
,”
Phys. Rev. E
74
,
066308
(
2006
).
14.
T.
Wei
and
D.
Livescu
, “
Late-time quadratic growth in single-mode Rayleigh-Taylor instability
,”
Phys. Rev. E
86
,
046405
(
2012
).
15.
P.
Ramaprabhu
,
G.
Dimonte
,
P.
Woodward
,
C.
Fryer
,
G.
Rockefeller
,
K.
Muthuraman
,
P.-H.
Lin
, and
J.
Jayaraj
, “
The late-time dynamics of the single-mode Rayleigh-Taylor instability
,”
Phys. Fluids
24
,
074107
(
2012
).
16.
Z.-X.
Hu
,
Y.-S.
Zhang
,
B.
Tian
,
Z.
He
, and
L.
Li
, “
Effect of viscosity on two-dimensional single-mode Rayleigh-Taylor instability during and after the reacceleration stage
,”
Phys. Fluids
31
,
104108
(
2019
).
17.
D. M.
Anderson
,
G. B.
McFadden
, and
A. A.
Wheeler
, “
Diffuse-interface methods in fluid mechanics
,”
Annu. Rev. Fluid. Mech.
30
,
139
165
(
1998
).
18.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
,
258
267
(
1958
).
19.
J. W.
Cahn
, “
Phase separation by spinodal decomposition in isotropic systems
,”
J. Chem. Phys.
42
,
93
99
(
1965
).
20.
F.
Magaletti
,
F.
Picano
,
M.
Chinappi
,
L.
Marino
, and
C. M.
Casciola
, “
The sharp-interface limit of the Cahn-Hilliard/Navier-Stokes model for binary fluids
,”
J. Fluid Mech.
714
,
95
126
(
2013
).
21.
A.
Celani
,
A.
Mazzino
,
P.
Muratore-Ginanneschi
, and
L.
Vozella
, “
Phase-field model for the Rayleigh-Taylor instability of immiscible fluids
,”
J. Fluid Mech.
622
,
115
134
(
2009
).
22.
H. G.
Lee
,
K.
Kim
, and
J.
Kim
, “
On the long time simulation of the Rayleigh-Taylor instability
,”
Int. J. Numer. Methods Eng.
85
,
1633
1647
(
2011
).
23.
H. G.
Lee
and
J.
Kim
, “
Numerical simulation of the three-dimensional Rayleigh-Taylor instability
,”
Comput. Math. Appl.
66
,
1466
1474
(
2013
).
24.
L.
Hong
,
H.
Xiaoliang
,
H.
Xuefeng
, and
X.
Jiangrong
, “
Direct numerical simulations of multi-mode immiscible Rayleigh-Taylor instability with high Reynolds numbers
,”
Phys. Fluids
31
,
112104
(
2019
).
25.
I.
Nitschke
,
A.
Voigt
, and
J.
Wensch
, “
A finite element approach to incompressible two-phase flow on manifolds
,”
J. Fluid Mech.
708
,
418
438
(
2012
).
26.
Q.
Yang
,
B. Q.
Li
,
Z.
Zhao
,
J.
Shao
, and
F.
Xu
, “
Numerical analysis of the Rayleigh-Taylor instability in an electric field
,”
J. Fluid Mech.
792
,
397
434
(
2016
).
27.
T.
Lyubimova
,
A.
Vorobev
, and
S.
Prokopev
, “
Rayleigh-Taylor instability of a miscible interface in a confined domain
,”
Phys. Fluids
31
,
014104
(
2019
).
28.
B.
Song
,
C.
Plana
,
J. M.
Lopez
, and
M.
Avila
, “
Phase-field simulation of core-annular pipe flow
,”
Int. J. Multiphase Flow
117
,
14
24
(
2019
).
29.
V. M.
Kendon
,
M. E.
Cates
,
I.
Pagonabarraga
,
J.-C.
Desplat
, and
P.
Bladon
, “
Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: A lattice Boltzmann study
,”
J. Fluid Mech.
440
,
147
203
(
2001
).
30.
H.
Henry
and
G.
Tegze
, “
Self-similarity and coarsening rate of a convecting bicontinuous phase separating mixture: Effect of the viscosity contrast
,”
Phys. Rev. F
3
,
074306
(
2018
).
31.
H.
Henry
and
G.
Tegze
, “
Kinetics of coarsening have dramatic effects on the microstructure: Self-similarity breakdown induced by viscosity contrast
,”
Phys. Rev. E
100
,
013116
(
2019
).
You do not currently have access to this content.