A quasi-two-dimensional shear layer is produced by merging two gravity-driven flows of soap film at different average velocities. The Kelvin–Helmholtz instability dominates the evolution of the shear layer, similar to what is observed in three-dimensional shear layers. However, the constraints that effectively limit the flow to two spatial dimensions have a considerable influence on the development of secondary instabilities and transition to turbulence. Nearly 40 cm downstream in the flow, two two-dimensional instabilities are observed, namely, vortex-pairing and secondary Kelvin–Helmholtz instability. The development of secondary instabilities and transition to turbulence in the flow is also affected by the interaction of the flowing soap film with boundary layers forming in the air surrounding the flowing soap film in the direction normal to the plane of the film. This becomes apparent when the flow is analyzed quantitatively in terms of the mixing interface length and fractal dimension. Initially, the mixing interface length grows exponentially with the downstream distance; however, beyond a certain distance, the growth stops. For the fractal dimension of the mixing interface in our quasi-two-dimensional shear layer, we have observed a peak value of 1.27 as compared to 1.34 reported in the literature for a corresponding section of a three-dimensional shear layer. For scales larger than ∼1 cm, interaction with air begins to dominate as the leading mechanism of dissipation. Coupling with boundary layers in air near the soap film drains energy from the large flow features and apparently “freezes” its evolution, producing “fossil” turbulence at large downstream distances.

1.
W.
Thomson
, “
XLVI. Hydrokinetic solutions and observations
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
42
(
281
),
362
377
(
1871
).
2.
H.
Helmholtz
, “
XLIII. On discontinuous movements of fluids
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
36
(
244
),
337
346
(
1868
).
3.
R. S.
Scorer
, “
Billow mechanics
,”
Radio Sci.
4
(
12
),
1299
1308
(
1969
).
4.
B. J.
Bayly
,
S. A.
Orszag
, and
T.
Herbert
, “
Instability mechanisms in shear-flow transition
,”
Annu. Rev. Fluid Mech.
20
(
1
),
359
391
(
1988
).
5.
R. H.
Kraichnan
and
D.
Montgomery
, “
Two-dimensional turbulence
,”
Rep. Prog. Phys.
43
(
5
),
547
(
1980
).
6.
G.
Boffetta
and
R. E.
Ecke
, “
Two-dimensional turbulence
,”
Annu. Rev. Fluid Mech.
44
,
427
451
(
2012
).
7.
K. S.
Fine
,
A. C.
Cass
,
W. G.
Flynn
, and
C. F.
Driscoll
, “
Relaxation of 2D turbulence to vortex crystals
,”
Phys. Rev. Lett.
75
,
3277
3280
(
1995
).
8.
J.
Dewar
, “
Soap films as detectors: Stream lines and sound
,”
Proc. R. Inst.
24
,
197
259
(
1923
).
9.
Y.
Couder
, “
Two-dimensional grid turbulence in a thin liquid film
,”
J. Phys. Lett.
45
(
8
),
353
360
(
1984
).
10.
B. K.
Martin
,
X. L.
Wu
,
W. I.
Goldburg
, and
M. A.
Rutgers
, “
Spectra of decaying turbulence in a soap film
,”
Phys. Rev. Lett.
80
(
18
),
3964
(
1998
).
11.
M.
Rivera
,
P.
Vorobieff
, and
R. E.
Ecke
, “
Turbulence in flowing soap films: Velocity, vorticity, and thickness fields
,”
Phys. Rev. Lett.
81
(
7
),
1417
(
1998
).
12.
I.
Kim
and
S.
Mandre
, “
Marangoni elasticity of flowing soap films
,”
Phys. Rev. Fluids
2
(
8
),
082001
(
2017
).
13.
A.
Sane
,
S.
Mandre
, and
I.
Kim
, “
Surface tension of flowing soap films
,”
J. Fluid Mech.
841
,
R2
(
2018
).
14.
M. I.
Auliel
,
F. C.
Hebrero
,
R.
Sosa
, and
G.
Artana
, “
Schlieren technique in soap film flows
,”
Exp. Fluids
58
(
5
),
38
(
2017
).
15.
K.
Siddharth
,
M. V.
Panchagnula
, and
T.
John Tharakan
, “
Feature correlation velocimetry for measuring instantaneous liquid sheet velocity
,”
J. Fluids Eng.
139
(
9
),
091401
(
2017
).
16.
S.
Feng
,
C.
Chen
,
Q.
Huang
, and
T.
Zhou
, “
Experimental study on the flapping dynamics for a single flexible filament in a vertical soap film
,”
J. Fluids Struct.
86
,
236
246
(
2019
).
17.
I.
Kim
, “
Separated rows structure of vortex streets behind triangular objects
,”
J. Fluid Mech.
862
,
216
226
(
2019
).
18.
N. G.
Chikkam
and
S.
Kumar
, “
Flow past a rotating hydrophobic/nonhydrophobic circular cylinder in a flowing soap film
,”
Phys. Rev. Fluids
4
(
11
),
114802
(
2019
).
19.
D.
Georgiev
and
P.
Vorobieff
, “
The slowest soap-film tunnel in the Southwest
,”
Rev. Sci. Instrum.
73
(
3
),
1177
1184
(
2002
).
20.
B.
Martin
and
X. l.
Wu
, “
Shear flow in a two-dimensional Couette cell: A technique for measuring the viscosity of free-standing liquid films
,”
Rev. Sci. Instrum.
66
(
12
),
5603
5608
(
1995
).
21.
P.
Vorobieff
and
R. E.
Ecke
, “
Fluid instabilities and wakes in a soap-film tunnel
,”
Am. J. Phys.
67
(
5
),
394
399
(
1999
).
22.
T.
Shakeel
and
P.
Vorobieff
, “
Decaying turbulence in soap films: Energy and enstrophy evolution
,”
Exp. Fluids
43
(
1
),
125
133
(
2007
).
23.
O. S.
Kylander
and
K.
Kylander
,
GIMP: The Official Handbook With CDROM
(
Coriolis Value
,
1999
).
24.
D.
Olmstead
,
P.
Wayne
,
J.-H.
Yoo
,
S.
Kumar
,
C. R.
Truman
, and
P.
Vorobieff
, “
Experimental study of shock-accelerated inclined heavy gas cylinder
,”
Exp. Fluids
58
(
6
),
71
(
2017
).
25.
A. D. M.
Walker
, “
The Kelvin-Helmholtz instability in the low-latitude boundary layer
,”
Planet. Space Sci.
29
(
10
),
1119
1133
(
1981
).
26.
P. E.
Dimotakis
, “
The mixing transition in turbulent flows
,”
J. Fluid Mech.
409
,
69
98
(
2000
).
27.
J. H.
Konrad
, “
An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions
,” Ph.D. thesis,
California Institute of Technology
,
1977
.
28.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Courier Corporation
,
2013
).
29.
A.
Suzuki
,
H. R.
Takahashi
, and
T.
Kudoh
, “
Linear growth of the Kelvin-Helmholtz instability with an adiabatic cosmic-ray gas
,”
Astrophys. J.
787
(
2
),
169
(
2014
).
30.
R.
Chong
,
O.
Lafitte
, and
J.
Cahen
, “
Linear growth rate for Kelvin-Helmholtz instability appearing in a moving mixing layer
,”
Phys. Scr.
2008
(
T132
),
014039
.
31.
R.
Keppens
,
G.
Tóth
,
R. H. J.
Westermann
, and
J. P.
Goedbloed
, “
Growth and saturation of the Kelvin-Helmholtz instability with parallel and antiparallel magnetic fields
,”
J. Plasma Phys.
61
,
1
19
(
1999
).
32.
J.-M.
Chomaz
, “
The dynamics of a viscous soap film with soluble surfactant
,”
J. Fluid Mech.
442
,
387
409
(
2001
).
33.
M.
Lesieur
,
Turbulence (Edition 2013)
(
EDP Sciences
,
2014
).
34.
J.
Ottino
,
The Kinematics of Mixing: Stretching, Chaos, and Transport
(
Cambridge University Press
,
1989
), Vol. 3.
35.
J.
Krasnodebski
,
M.
O’Sullivan
,
D.
Tew
,
E.
Greitzer
,
F.
Marble
,
C.
Tan
, and
T.
Tillman
, “
Enhanced mixing with streamwise vorticity
,”
Prog. Aerosp. Sci.
33
,
323
(
1997
).
36.
C. J.
Bourdon
and
J. C.
Dutton
, “
Shear layer flapping and interface convolution in a separated supersonic flow
,”
AIAA J.
38
(
10
),
1907
1915
(
2000
).
37.
R.
Truesdell
,
P.
Vorobieff
,
L.
Sklar
, and
A.
Mammoli
, “
Mixing of a continuous flow of two fluids due to unsteady flow
,”
Phys. Rev. E
67
(
6
),
066304
(
2003
).
38.
P.
Vorobieff
,
C. R.
Truman
,
A. M.
Ragheb
,
G. S.
Elliott
,
J. K.
Laystrom-Woodard
,
D. M.
King
,
D. L.
Carroll
, and
W. C.
Solomon
, “
Mixing enhancement in a multi-stream injection nozzle
,”
Exp. Fluids
51
(
3
),
711
722
(
2011
).
39.
A.
Bandopadhyay
,
P.
Davy
, and
T.
Le Borgne
, “
Shear flows accelerate mixing dynamics in hyporheic zones and hillslopes
,”
Geophys. Res. Lett.
45
(
21
),
11
659
, (
2018
).
40.
F.
Schönfeld
,
V.
Hessel
, and
C.
Hofmann
, “
An optimised split-and-recombine micro-mixer with uniform ‘chaotic’ mixing
,”
Lab Chip
4
(
1
),
65
69
(
2004
).
41.
J. R.
Pacheco
, “
Mixing enhancement in electro-osmotic flows via modulation of electric fields
,”
Phys. Fluids
20
(
9
),
093603
(
2008
).
42.
K. R.
Sreenivasan
and
C.
Meneveau
, “
The fractal facets of turbulence
,”
J. Fluid Mech.
173
,
357
386
(
1986
).
43.
P.
Constantin
,
I.
Procaccia
, and
K. R.
Sreenivasan
, “
Fractal geometry of isoscalar surfaces in turbulence: Theory and experiments
,”
Phys. Rev. Lett.
67
(
13
),
1739
(
1991
).
44.
J.
Theiler
, “
Estimating fractal dimension
,”
J. Opt. Soc. Am. A
7
(
6
),
1055
1073
(
1990
).
45.
P.
Flohr
and
D.
Olivari
, “
Fractal and multifractal characteristics of a scalar dispersed in a turbulent jet
,”
Physica D
76
(
1-3
),
278
290
(
1994
).
46.
P.
Vorobieff
,
P. M.
Rightley
, and
R. F.
Benjamin
, “
Shock-driven gas curtain: Fractal dimension evolution in transition to turbulence
,”
Physica D
133
(
1-4
),
469
476
(
1999
).
47.
C.
Platero
, “
Fractal dimension evolution in a shear layer instability
,” Master’s thesis,
University of New Mexico
,
2003
.
48.
D.
Bernard
,
G.
Boffetta
,
A.
Celani
, and
G.
Falkovich
, “
Conformal invariance in two-dimensional turbulence
,”
Nat. Phys.
2
(
2
),
124
128
(
2006
).
49.
J. D.
Woods
,
V.
Högström
,
P.
Misme
,
H.
Ottersten
, and
O. M.
Phillips
, “
Fossil turbulence
,”
Radio Sci.
4
(
12
),
1365
1367
(
1969
).
50.
C. H.
Gibson
, “
Internal waves, fossil turbulence, and composite ocean microstructure spectra
,”
J. Fluid Mech.
168
,
89
117
(
1986
).
You do not currently have access to this content.