High-resolution three-dimensional implicit large eddy simulations of implosion in spherical geometries are presented. The growth of perturbations is due to Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities and also to geometric convergence and compression effects. RM and RT instabilities have been studied extensively in planar configurations, but there are comparatively few studies on spherical geometries. Planar geometries lack the effect of convergence that changes the morphology and growth of perturbations in spherical geometries. This paper presents a study of turbulent mixing in spherical geometries considering different narrowband (NB) and broadband multimode initial perturbations and examines several quantities including the evolution of the integral mixing layer width and integral bubble and spike heights using novel integral definitions. The growth of the bubble and spike is modeled using a Buoyancy–Drag (BD) approach that is based on simple ordinary differential equations to model the growth of the turbulent mixing layer. In a recent study, Youngs and Thornber [“Buoyancy-drag modelling of bubble and spike distances for single-shock Richtmyer-Meshkov mixing,” Physica D 410, 132517 (2020)] constructed modifications to the BD equations to take into account the early stages of the mixing process that are dependent on the initial conditions. Those modifications are shown to be important to obtain correct results. The current study adopted the same modifications and adapted the BD equations to the spherical implosion case. The results of the BD model are compared with those of different initial NB cases that include different initial amplitudes and wavelengths of the perturbations, for validation purposes. The predictions from the new BD model are in very good agreement with the numerical results; however, there exist some limitations in the accuracy of the model, in particular the use of the interface position and fluid velocity from one-dimensional data.

1.
D. L.
Youngs
and
B.
Thornber
, “
Buoyancy-drag modelling of bubble and spike distances for single-shock Richtmyer-Meshkov mixing
,”
Physica D
410
,
132517
(
2020
).
2.
Lord Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-14
,
170
(
1900
).
3.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes
,”
Proc. R. Soc. London, Ser. A
201
,
192
196
(
1950
).
4.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math
13
,
297
319
(
1960
).
5.
E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
,
101
104
(
1969
).
6.
O. A.
Hurricane
,
D. A.
Callahan
,
D. T.
Casey
,
E. L.
Dewald
,
T. R.
Dittrich
,
T.
Döppner
,
S.
Haan
,
D. E.
Hinkel
,
L. B.
Hopkins
,
O.
Jones
,
A. L.
Kritcher
,
S. L.
Pape
,
T.
Ma
,
A. G.
MacPhee
,
J. L.
Milovich
,
J.
Moody
,
A.
Pak
,
H.-S.
Park
,
P. K.
Patel
,
J. E.
Ralph
,
H. F.
Robey
,
J. S.
Ross
,
J. D.
Salmonson
,
B. K.
Spears
,
P. T.
Springer
,
R.
Tommasini
,
F.
Albert
,
L. R.
Benedetti
,
R.
Bionta
,
E.
Bond
,
D. K.
Bradley
,
J.
Caggiano
,
P. M.
Celliers
,
C.
Cerjan
,
J. A.
Church
,
R.
Dylla-Spears
,
D.
Edgell
,
M. J.
Edwards
,
D.
Fittinghoff
,
M. B.
Garcia
,
A.
Hamza
,
R.
Hatarik
,
H.
Herrmann
,
M.
Hohenberger
,
D.
Hoover
,
J. L.
Kline
,
G.
Kyrala
,
B.
Kozioziemski
,
G.
Grim
,
J. E.
Field
,
J.
Frenje
,
N.
Izumi
,
M. G.
Johnson
,
S. F.
Khan
,
J.
Knauer
,
T.
Kohut
,
O.
Landen
,
F.
Merrill
,
P.
Michel
,
A.
Moore
,
S. R.
Nagel
,
A.
Nikroo
,
T.
Parham
,
R. R.
Rygg
,
D.
Sayre
,
M.
Schneider
,
D.
Shaughnessy
,
D.
Strozzi
,
R. P. J.
Town
,
D.
Turnbull
,
P.
Volegov
,
A.
Wan
,
K.
Widmann
,
C.
Wilde
, and
C.
Yeamans
, “
Inertially confined fusion plasmas dominated by alpha-particle self-heating
,”
Nat. Phys.
12
,
800
(
2016
).
7.
J. D.
Lindl
,
P.
Amendt
,
R. L.
Berger
,
S. G.
Glendinning
,
S. H.
Glenzer
,
S. W.
Haan
,
R. L.
Kauffman
,
O. L.
Landen
, and
L. J.
Suter
, “
The physics basis for ignition using indirect-drive targets on the National Ignition Facility
,”
Phys. Plasmas
11
,
339
491
(
2004
).
8.
J.
Lindl
,
O.
Landen
,
J.
Edwards
,
E.
Moses
, and
N.
Team
, “
Review of the National Ignition Campaign 2009-2012
,”
Phys. Plasmas
21
,
020501
(
2014
).
9.
J.
Nuckolls
,
L.
Wood
,
A.
Thiessen
, and
G.
Zimmerman
, “
Laser compression of matter to super-high densities: Thermonuclear (CTR) applications
,”
Nature
239
,
139
(
1972
).
10.
O. A.
Hurricane
,
D. A.
Callahan
,
D. T.
Casey
,
P. M.
Celliers
,
C.
Cerjan
,
E. L.
Dewald
,
T. R.
Dittrich
,
T.
Döppner
,
D. E.
Hinkel
,
L. F. B.
Hopkins
,
J. L.
Kline
,
S. L.
Pape
,
T.
Ma
,
A. G.
Macphee
,
J. L.
Milovich
,
A.
Pak
,
H.-S.
Park
,
P. K.
Patel
,
B. A.
Remington
,
J. D.
Salmonson
,
P. T.
Springer
, and
R.
Tommasini
, “
Fuel gain exceeding unity in an inertially confined fusion implosion
,”
Nature
506
,
343
347
(
2014
).
11.
R.
Betti
and
O. A.
Hurricane
, “
Inertial-confinement fusion with lasers
,”
Nature
12
,
435
448
(
2016
).
12.
C. C.
Joggerst
,
A.
Almgren
, and
S. E.
Woosley
, “
Three-dimensional simulations of Rayleigh-Taylor mixing in core-collapse supernovae with CASTRO
,”
Astrophys. J.
723
,
353
363
(
2010
).
13.
A. S.
Almgren
,
J. B.
Bell
,
C. A.
Rendleman
, and
M.
Zingale
, “
Low Mach number modeling of type Ia supernovae. I. Hydrodynamics
,”
Astrophys. J.
637
,
922
936
(
2006
).
14.
A. S.
Almgren
,
J. B.
Bell
,
C. A.
Rendleman
, and
M.
Zingale
, “
Low Mach number modeling of type Ia supernovae. II. Energy evolution
,”
Astrophys. J.
649
,
927
938
(
2006
).
15.
A. S.
Almgren
,
J. B.
Bell
,
A.
Nonaka
, and
M.
Zingale
, “
Low Mach number modeling of type Ia supernovae. III. Reactions
,”
Astrophys. J.
684
,
449
470
(
2008
).
16.
M.
Zingale
,
A. S.
Almgren
,
J. B.
Bell
,
A.
Nonaka
, and
S. E.
Woosley
, “
Low Mach number modeling of type Ia supernovae. IV. White dwarf convection
,”
Astrophys. J.
704
,
196
210
(
2009
).
17.
B.-I.
Jun
,
T. W.
Jones
, and
M. L.
Norman
, “
Interaction of Rayleigh-Taylor fingers and circumstellar cloudlets in young supernova remnants
,”
Astrophys. Lett.
468
,
L59
(
1996
).
18.
Y.
Zhou
,
T. T.
Clark
,
D. S.
Clark
,
S. G.
Glendinning
,
M. A.
Skinner
,
C. M.
Huntington
,
O. A.
Hurricane
,
A. M.
Dimits
, and
B. A.
Remington
, “
Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities
,”
Phys. Plasmas
26
,
080901
(
2019
).
19.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I
,”
Phys. Rep.
720-722
,
1
136
(
2017
).
20.
Y.
Zhou
, “
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II
,”
Phys. Rep.
723-725
,
1
160
(
2017
).
21.
E.
Leinov
,
G.
Malamud
,
Y.
Elbaz
,
L. A.
Levin
,
G.
Ben-Dor
,
D.
Shvarts
, and
O.
Sadot
, “
Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions
,”
J. Fluid Mech.
626
,
449
475
(
2009
).
22.
S. R.
Nagel
,
K. S.
Raman
,
C. M.
Huntington
,
S. A.
MacLaren
,
P.
Wang
,
M. A.
Barrios
,
T.
Baumann
,
J. D.
Bender
,
L. R.
Benedetti
,
S. F. D. M.
Doane
,
P.
Fitzsimmons
,
K. A.
Flippo
,
J. P.
Holder
,
D. N.
Kaczala
,
T. S.
Perry
,
R. M.
Seugling
,
L.
Savage
, and
Y.
Zhou
, “
A platform for studying the Rayleigh–Taylor and Richtmyer–Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility
,”
Phys. Plasmas
24
,
072704
(
2017
).
23.
D. T.
Reese
,
A. M.
Ames
,
C. D.
Noble
,
J. G.
Oakley
,
D. A.
Rothamer
, and
R.
Bonazza
, “
Simultaneous direct measurements of concentration and velocity in the Richtmyer-Meshkov instability
,”
J. Fluid Mech.
849
,
541
575
(
2018
).
24.
D. S.
Clark
,
A. L.
Kritcher
,
S. A.
Yi
,
S. W.
Haan
,
A. B.
Zylstr
, and
C. R.
Weber
, “
Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators
,”
Phys. Plasmas
25
,
032703
(
2018
).
25.
M.
Mohaghar
,
J.
Carter
,
G.
Pathikonda
, and
D.
Ranjan
, “
The transition to turbulence in shock-driven mixing: Effects of Mach number and initial conditions
,”
J. Fluid Mech.
871
,
595
635
(
2019
).
26.
V. A.
Thomas
and
R. J.
Kares
, “
Drive asymmetry and the origin of turbulence in an ICF implosion
,”
Phys. Rev. Lett.
109
,
075004
(
2012
).
27.
D. S.
Clark
,
D. E.
Hinkel
,
D. C.
Eder
,
O. S.
Jones
,
S. W.
Haan
,
B. A.
Hammel
,
M. M.
Marinak
,
J. L.
Milovich
,
H. F.
Robey
,
L. J.
Suter
, and
R. P. J.
Town
, “
Detailed implosion modelling of deuterium-tritium layered experiments on the National Ignition Facility
,”
Phys. Plasmas
20
,
056318
(
2013
).
28.
I. V.
Igumenshchev
,
V. N.
Goncharov
,
F. J.
Marshall
,
J. P.
Knauer
,
E. M.
Campbell
,
C. J.
Forrest
,
D. H.
Froula
,
V. Y.
Glebov
,
R. L.
McCrory
,
S. P.
Regan
,
T. C.
Sangster
,
S.
Skupsky
, and
C.
Stoeckl
, “
Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA
,”
Phys. Plasmas
23
,
052702
(
2016
).
29.
B.
Thornber
,
J.
Griffond
,
O.
Poujade
,
N.
Attal
,
H.
Varshochi
,
P.
Bigdelou
,
P.
Ramaprabhu
,
B.
Olson
,
J.
Greenough
,
Y.
Zhou
,
O.
Schilling
,
K. A.
Garside
,
R. J. R.
Williams
,
C. A.
Batha
,
P. A.
Kuchugov
,
M. E.
Ladonkina
,
V. F.
Tishkin
,
N. V.
Zmitrenko
,
V. B.
Rozanov
, and
D. L.
Youngs
, “
Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: The θ-group collaboration
,”
Phys. Fluids
29
,
105107
(
2017
).
30.
M.
Groom
and
B.
Thornber
, “
Direct numerical simulation of the multimode narrowband Richtmyer-Meshkov instability
,”
Comput. Fluids
194
,
104309
(
2019
).
31.
D. L.
Youngs
and
R. J. R.
Williams
, “
Turbulent mixing in spherical implosions
,”
Int. J. Numer. Methods Fluids
56
,
1597
1603
(
2008
).
32.
M.
Flaig
,
D.
Youngs
,
D.
Clark
,
C.
Weber
, and
B.
Thornber
, “
Single-mode perturbation growth in an idealized inertial confinement fusion implosion
,”
J. Comput. Phys.
371
,
801
819
(
2018
).
33.
C. C.
Joggerst
,
A.
Nelson
,
P.
Woodward
,
C.
Lovekin
,
T.
Masser
,
C. L.
Fryer
,
P.
Ramaprabhu
,
M.
Francois
, and
G.
Rockefeller
, “
Cross-code comparisons of mixing during the implosion of dense cylindrical and spherical shells
,”
J. Comput. Phys.
275
,
154
173
(
2014
).
34.
P.
Woodward
,
J.
Jayayaraj
,
P.
Lin
,
M. R.
Knox
,
D. H.
Porter
,
C. L.
Fryer
,
G.
Dimonte
,
C.
Joggerst
,
G.
Rockefeller
,
W. W.
Dai
,
R. J.
Kares
, and
V.
Thomas
, “
Simulating turbulent mixing from Richtmyer-Meshkov and Rayleigh-Taylor instabilities in converging geometries using moving cartesian grids
,” in
Simulating Turbulent Mixing from Richtmyer-Meshkov and Rayleigh-Taylor Instabilities in Converging Geometries using Moving Cartesian Grids
(
OSTI
,
2013
), see https://www.osti.gov/biblio/1063249.
35.
I.
Boureima
,
P.
Ramaprabhu
, and
N.
Attal
, “
Properties of the turbulent mixing layer in a spherical implosion
,”
J. Fluids Eng.
140
,
050905
(
2018
).
36.
M.
Lombardini
,
D. I.
Pullin
, and
D. I.
Meiron
, “
Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth
,”
J. Fluid Mech.
748
,
85
112
(
2014
).
37.
M.
Lombardini
,
D. I.
Pullin
, and
D. I.
Meiron
, “
Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics
,”
J. Fluid Mech.
748
,
113
142
(
2014
).
38.
M.
El Rafei
,
M.
Flaig
,
D. L.
Youngs
, and
B.
Thornber
, “
Three-dimensional simulations of turbulent mixing in spherical implosions
,”
Phys. Fluids
31
,
114101
(
2019
).
39.
A.
Mignone
,
G.
Bodo
,
S.
Massaglia
,
T.
Matsakos
,
O.
Tesileanu
,
C.
Zanni
, and
A.
Ferrari
, “
PLUTO: A numerical code for computational astrophysics
,”
Astrophys. J., Suppl. Ser.
170
,
228
242
(
2007
).
40.
A.
Mignone
,
C.
Zanni
,
P.
Tzeferacos
,
B.
van Straalen
,
P.
Colella
, and
G.
Bodo
, “
The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics
,”
Astrophys. J., Suppl. Ser.
198
,
7
(
2012
).
41.
M.
Xiao
,
Y.
Zhang
, and
T.
Baolin
, “
Modeling of turbulent mixing with an improved K-L model
,”
Phys. Fluids
32
,
092104
(
2020
).
42.
K. O.
Mikaelian
, “
Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells
,”
Phys. Rev. A
42
,
3400
3420
(
1990
).
43.
R.
Epstein
, “
On the Bell-Plesset effects: The effects of uniform compression and geometrical convergence on the classical Rayleigh-Taylor instability
,”
Phys. Plasmas
11
,
5114
5124
(
2004
).
44.
G.
Bell
, “
Taylor instability on cylinders and spheres in the small amplitude approximation
,” Report LA-1321,
Los Alamos National Laboratory
,
Los Alamos, NM
,
1951
.
45.
M. S.
Plesset
, “
On the stability of fluid flows with spherical symmetry
,”
J. Appl. Phys.
25
,
96
98
(
1954
).
46.
P.
Amendt
,
J. D.
Colvin
,
R. E.
Tipton
,
D. E.
Hinkel
,
M. J.
Edwards
,
O. L.
Landen
,
J. D.
Ramshaw
,
L. J.
Suter
,
W. S.
Varnum
, and
R. G.
Watt
, “
Indirect-drive noncryogenic double-shell ignition targets for the national ignition facility: Design and analysis
,”
Phys. Plasmas
9
,
2221
2233
(
2002
).
47.
D.
Layzer
, “
On the instability of superposed fluids in a gravitational field
,”
Astrophys. J.
122
,
1
(
1955
).
48.
L.
Baker
and
J. R.
Freeman
, “
Heuristic model of the nonlinear Rayleigh–Taylor instability
,”
J. Appl. Phys.
52
,
655
663
(
1981
).
49.
G.
Dimonte
and
M.
Schneider
, “
Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories
,”
Phys. Fluids
12
,
304
321
(
2000
).
50.
J. C. V.
Hansom
,
P. A.
Rosen
,
T. J.
Goldack
,
K.
Oades
,
P.
Fieldhouse
,
N.
Cowperthwaite
,
D. L.
Youngs
,
N.
Mawhinney
, and
A. J.
Baxter
, “
Radiation driven planar foil instability and mix experiments at the AWE HELEN laser
,”
Laser Part. Beams
8
,
51
71
(
1990
).
51.
D.
Oron
,
L.
Arazi
,
D.
Kartoon
,
A.
Rikanati
,
A.
Alon
, and
D.
Shvarts
, “
Dimensionality dependence of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws
,”
Phys. Plasmas
8
,
2883
(
2001
).
52.
J. D.
Ramshaw
, “
Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration
,”
Phys. Rev. E
58
,
5834
5840
(
1998
).
53.
B.
Musci
,
S.
Petter
,
G. P. B.
Ochs
, and
D.
Ranjan
, “
Supernova hydrodynamics: A lab-scale study of the blast-driven instability using high-speed diagnostics
,”
Astrophys. J.
896
,
92
(
2020
).
54.
B.
Thornber
,
D.
Drikakis
,
D. L.
Youngs
, and
R. J. R.
Williams
, “
The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability
,”
J. Fluid Mech.
654
,
99
139
(
2010
).
55.
K. H.
Kim
and
C.
Kim
, “
Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: Part I: Spatial discretization
,”
J. Comput. Phys.
208
,
527
569
(
2005
).
56.
B.
Thornber
,
A.
Mosedale
,
D.
Youngs
, and
R.
Williams
, “
An improved reconstruction method for compressible flows with low Mach number features
,”
J. Comput. Phys.
227
,
4873
4894
(
2008
).
57.
E.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock Waves
4
,
25
34
(
1994
).
58.
R. J.
Spiteri
and
S. J.
Ruuth
, “
A new class of optimal high-order strong-stability preserving time discretization methods
,”
SIAM J. Numer. Anal.
40
,
469
491
(
2002
).
59.
M.
El Rafei
and
B.
Thornber
, “
A comparison of a modified curvilinear approach for compressible problems in spherical geometry and a truly spherical high-order method
,” in
Proceedings of the 21st Australasian Fluid Mechanics Conference
,
2018
.
60.
M.
El Rafei
and
B.
Thornber
, “
Mix width, bubble and spike amplitudes in three-dimensional numerical simulations of turbulent mixing driven by spherical implosions
,” in
Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference 5: Multiphase Flow, San Francisco, CA, USA
(
ASME
,
2019
), V005T05A020.
61.
Y.
Zhou
and
W. H.
Cabot
, “
Time-dependent study of anisotropy in Rayleigh-Taylor instability induced turbulent flows with a variety of density ratios
,”
Phys. Fluids
31
,
084106
(
2019
).
62.
B.
Thornber
,
J.
Griffond
,
P.
Bigdelou
,
I.
Boureima
,
P.
Ramaprabhu
,
O.
Schilling
, and
R. J. R.
Williams
, “
Turbulent transport and mixing in the multimode narrowband Richtmyer-Meshkov instability
,”
Phys. Fluids
31
,
096105
(
2019
).
63.
Y.
Zhou
,
W. H.
Cabot
, and
B.
Thornber
, “
Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows
,”
Phys. Plasmas
23
,
052712
(
2016
).
64.
U.
Alon
,
J.
Hecht
,
D.
Ofer
, and
D.
Shvarts
, “
Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios
,”
Phys. Rev. Lett.
74
,
534
537
(
1995
).
65.
D.
Kartoon
,
D.
Oron
,
L.
Arazi
, and
D.
Shvarts
, “
Three-dimensional multimode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at all density ratios
,”
Laser Part. Beams
21
,
327
334
(
2003
).
66.
M.
Probyn
,
R.
Williams
,
B.
Thornber
, and
D.
Youngs
, “
2D single-mode Richtmyer-Meshkov instability
,”
Physica D
(submitted) (
2019
).
67.
K. A.
Meyer
and
P.
Blewett
, “
Numerical investigation of the stability of a shock-accelerated interface between two fluids
,”
Phys. Fluids
15
,
753
759
(
1972
).
68.
G.
Dimonte
and
P.
Ramaprabhu
, “
Simulations and model of the nonlinear Richtmyer-Meshkov instability
,”
Phys. Fluids
22
,
014104
(
2010
).
You do not currently have access to this content.