The least square-based finite difference-finite volume (LSFD-FV) method has been developed and successfully applied to solve various two-dimensional flow problems with a high-order of accuracy. In this paper, the extension of the LSFD-FV method to the three-dimensional (3D) case on unstructured grids is presented. Different from other existing high-order methods, the LSFD-FV method combines the good features of the least square-based finite difference (LSFD) scheme for derivative approximation and the finite volume (FV) discretization for conservation of physical laws. Within each control cell, a high-order polynomial resultant from a Taylor series expansion is used to approximate the solution in the FV discretization of governing equations, where the derivatives are approximated by the LSFD scheme. As a result, the mesh-free nature of the LSFD scheme endows the LSFD-FV method with the flexibility on unstructured grids. Additionally, the straightforward algorithm of the LSFD scheme and the direct utilization of the Taylor series polynomial make the LSFD-FV method user-friendly and easy to implement. Furthermore, the inviscid and viscous fluxes are simultaneously evaluated by lattice Boltzmann and gas kinetic flux solvers in this work, which avoids additional and complicated treatment for the viscous discretization. Accuracy studies on unstructured hexahedral and tetrahedral grids validate the third-order of accuracy of the 3D LSFD-FV method. Various 3D incompressible and compressible numerical experiments are also presented. The results show that the proposed method enjoys the higher accuracy than the conventional second-order method on the same mesh. When the same accuracy is achieved, the present high-order method has superior computational efficiency to the second-order counterpart.

1.
O. V.
Vasilyev
, “
High order finite difference schemes on non-uniform meshes with good conservation properties
,”
J. Comput. Phys.
157
,
746
761
(
2000
).
2.
Z. F.
Tian
and
Y. B.
Ge
, “
A fourth-order compact finite difference scheme for the steady stream function-vorticity formulation of the Navier-Stokes/Boussinesq equations
,”
Int. J. Numer. Methods Fluids
41
,
495
518
(
2003
).
3.
W. S.
Don
,
P.
Li
,
K. Y.
Wong
, and
Z.
Gao
, “
Improved symmetry property of high order weighted essentially non-oscillatory finite difference schemes for hyperbolic conservation laws
,”
Adv. Appl. Math. Mech.
10
,
1418
1439
(
2018
).
4.
M.
Sari
,
G.
Gürarslan
, and
A.
Zeytinoğlu
, “
High-order finite difference schemes for solving the advection-diffusion equation
,”
Math. Comput. Appl.
15
,
449
460
(
2010
).
5.
C.-W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
,
439
471
(
1988
).
6.
G.-S.
Jiang
and
C.-W.
Shu
, “
Efficient implementation of weighted ENO schemes
,”
J. Comput. Phys.
126
,
202
228
(
1996
).
7.
J.
Liu
,
J.
Qiu
,
O.
Hu
,
N.
Zhao
,
M.
Goman
, and
X.
Li
, “
Adaptive Runge-Kutta discontinuous Galerkin method for complex geometry problems on Cartesian grid
,”
Int. J. Numer. Methods Fluids
73
,
847
868
(
2013
).
8.
O.
Friedrich
, “
Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids
,”
J. Comput. Phys.
144
,
194
212
(
1998
).
9.
C.
Hu
and
C.-W.
Shu
, “
Weighted essentially non-oscillatory schemes on triangular meshes
,”
J. Comput. Phys.
150
,
97
127
(
1999
).
10.
T. J.
Barth
and
P. O.
Frederickson
, “
Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction
,” AIAA Paper No. 90-0013,
1990
.
11.
T. J.
Barth
, “
Recent developments in high-order k-exact reconstruction on unstructured meshes
,” AIAA Paper No. 93-0668,
1993
.
12.
C.
Ollivier-Gooch
and
M.
Van Altena
, “
A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation
,”
J. Comput. Phys.
181
,
729
752
(
2002
).
13.
L.
Cueto-Felgueroso
,
I.
Colominas
,
X.
Nogueira
,
F.
Navarrina
, and
M.
Casteleiro
, “
Finite volume solvers and moving least-squares approximations for the compressible Navier-Stokes equations on unstructured grids
,”
Comput. Methods Appl. Mech. Eng.
196
,
4712
4736
(
2007
).
14.
Y.
Guo
,
L.
Tang
,
H.
Zhang
, and
S.
Song
, “
A maximum-principle-preserving third order finite volume SWENO scheme on unstructured triangular meshes
,”
Adv. Appl. Math. Mech.
10
,
114
137
(
2018
).
15.
L.
Pan
and
K.
Xu
, “
A third-order gas-kinetic scheme for three-dimensional inviscid and viscous flow computations
,”
Comput. Fluids
119
,
250
260
(
2015
).
16.
L.
Pan
and
K.
Xu
, “
Two-stage fourth-order gas-kinetic scheme for three-dimensional Euler and Navier-Stokes solutions
,”
Int. J. Comput. Fluid Dyn.
32
,
395
411
(
2018
).
17.
Q.
Wang
,
Y.-X.
Ren
,
J.
Pan
, and
W.
Li
, “
Compact high order finite volume method on unstructured grids III: Variational reconstruction
,”
J. Comput. Phys.
337
,
1
26
(
2017
).
18.
W. H.
Reed
and
T. R.
Hill
, “
Triangular mesh methods for the neutron transport equation
,” Technical Report LA-UR-73-479,
Los Alamos Scientific Laboratory
,
Los Alamos
,
1973
.
19.
B.
Cockburn
and
C.-W.
Shu
, “
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework
,”
Math. Comput.
52
,
411
435
(
1989
).
20.
B.
Cockburn
and
C.-W.
Shu
, “
The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems
,”
J. Comput. Phys.
141
,
199
224
(
1998
).
21.
J.
Cheng
,
H.
Yue
,
S.
Yu
, and
T.
Liu
, “
A direct discontinuous Galerkin method with interface correction for the compressible Navier-Stokes equations on unstructured grids
,”
Adv. Appl. Math. Mech.
10
,
1
21
(
2018
).
22.
F.
Bassi
and
S.
Rebay
, “
A higher-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations
,”
J. Comput. Phys.
131
,
267
279
(
1997
).
23.
Z. J.
Wang
and
Y.
Liu
, “
Spectral (finite) volume method for conservation laws on unstructured grids IV: Extension to two dimensional systems
,”
J. Comput. Phys.
194
,
716
741
(
2004
).
24.
Z. J.
Wang
and
Y.
Liu
, “
Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow
,”
J. Comput. Phys.
215
,
41
58
(
2006
).
25.
Z. J.
Wang
, “
Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation
,”
J. Comput. Phys.
178
,
210
251
(
2002
).
26.
Z. J.
Wang
,
Y.
Liu
,
G.
May
, and
A.
Jameson
, “
Spectral difference method for unstructured grids II: Extension to the Euler equations
,”
J. Sci. Comput.
32
,
45
71
(
2007
).
27.
Y. Z.
Sun
,
Z. J.
Wang
, and
Y.
Liu
, “
High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids
,”
Commun. Comput. Phys.
2
,
310
333
(
2007
).
28.
Z. J.
Wang
, “
High-order methods for the Euler and Navier-Stokes equations on unstructured grids
,”
Prog. Aerosp. Sci.
43
,
1
41
(
2007
).
29.
Y. Y.
Liu
,
C.
Shu
,
H. W.
Zhang
, and
L. M.
Yang
, “
A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids
,”
J. Comput. Phys.
401
,
109019
(
2019
).
30.
Y. Y.
Liu
,
H. W.
Zhang
,
L. M.
Yang
, and
C.
Shu
, “
High-order least-square-based finite-difference–finite-volume method for simulation of incompressible thermal flows on arbitrary grids
,”
Phys. Rev. E
100
,
063308
(
2019
).
31.
H.
Ding
,
C.
Shu
, and
K. S.
Yeo
, “
Development of least square-based two-dimensional finite difference schemes and their application to simulate natural convection in a cavity
,”
Comput. Fluids
33
,
137
154
(
2004
).
32.
H.
Ding
,
C.
Shu
,
K. S.
Yeo
, and
D.
Xu
, “
Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method
,”
Comput. Methods Appl. Mech. Eng.
193
,
727
744
(
2004
).
33.
Y.
Sun
and
Z. J.
Wang
, “
Formulations and analysis of the spectral volume method for the diffusion equation
,”
Commun. Numer. Methods Eng.
20
,
927
937
(
2004
).
34.
J. J.
Douglas
and
T.
Dupont
,
Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods
, Lecture Notes in Physics (
Springer
,
Berlin
,
1976
), Vol. 58.
35.
B.
Cockburn
and
C.-W.
Shu
, “
The local discontinuous Galerkin method for time-dependent convection-diffusion systems
,”
SIAM J. Numer. Anal.
35
,
2440
2463
(
1998
).
36.
F.
Bassi
and
S.
Rebay
, “
GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations
,” in
Lecture Note in Computational Science and Engineering
(
Springer-Verlag
,
New York
,
2000
), Vol. 11, pp.
197
208
.
37.
F.
Bassi
,
A.
Crivellini
,
S.
Rebay
, and
M.
Savini
, “
Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations
,”
Comput. Fluids
34
,
507
540
(
2005
).
38.
Y.
Wang
,
C.
Shu
,
C. J.
Teo
,
J.
Wu
, and
L. M.
Yang
, “
Three-dimensional lattice Boltzmann flux solver and its applications to incompressible isothermal and thermal flows
,”
Commun. Comput. Phys.
18
,
593
620
(
2015
).
39.
L. M.
Yang
,
C.
Shu
, and
J.
Wu
, “
A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for flux evaluation at cell interface
,”
Comput. Fluids
79
,
190
199
(
2013
).
40.
L. M.
Yang
,
C.
Shu
, and
J.
Wu
, “
Extension of lattice Boltzmann flux solver for simulation of 3D viscous compressible flows
,”
Comput. Math. Appl.
71
,
2069
2081
(
2016
).
41.
L. M.
Yang
,
C.
Shu
,
Y.
Wang
, and
Y.
Sun
, “
Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows
,”
J. Comput. Phys.
319
,
129
144
(
2016
).
42.
D.
Zhou
,
Z.
Lu
, and
T.
Guo
, “
A rotating reference frame-based lattice Boltzmann flux solver for simulation of turbomachinery flows
,”
Int. J. Numer. Methods Fluids
83
,
561
582
(
2017
).
43.
H. Z.
Yuan
,
Y.
Wang
, and
C.
Shu
, “
An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows
,”
Phys. Fluids
29
,
123604
(
2017
).
44.
L.
Yang
,
Y.
Wang
,
Z.
Chen
, and
C.
Shu
,
Lattice Boltzmann and Gas Kinetic Flux Solvers: Theory and Applications
(
World Scientific
,
2020
).
45.
L.
Pan
and
K.
Xu
, “
High-order gas-kinetic scheme with three-dimensional WENO reconstruction for the Euler and Navier-Stokes solutions
,”
Comput. Fluids
198
,
104401
(
2020
).
46.
C.
Shu
,
L.
Wang
, and
Y. T.
Chew
, “
Numerical computation of three-dimensional incompressible Navier-Stokes equations in primitive variable form by DQ method
,”
Int. J. Numer. Methods Fluids
43
,
345
368
(
2003
).
47.
H.
Ding
,
C.
Shu
,
K. S.
Yeo
, and
D.
Xu
, “
Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method
,”
Comput. Methods Appl. Mech. Eng.
195
,
516
533
(
2006
).
48.
Z.
Chen
,
C.
Shu
, and
D.
Tan
, “
Highly accurate simplified lattice Boltzmann method
,”
Phys. Fluids
30
,
103605
(
2018
).
49.
Z.
Chen
,
C.
Shu
, and
D.
Tan
, “
Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows
,”
Phys. Fluids
29
,
053601
(
2017
).
50.
L. M.
Yang
,
C.
Shu
,
W. M.
Yang
, and
J.
Wu
, “
A simple gas kinetic scheme for simulation of 3D incompressible thermal flows
,”
Numer. Heat Transfer, Part B
72
,
450
468
(
2017
).
51.
T.
Fusegi
,
J. M.
Hyun
,
K.
Kuwahara
, and
B.
Farouk
, “
A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure
,”
Int. J. Heat Mass Transfer
34
,
1543
1557
(
1991
).
52.
L. M.
Yang
,
C.
Shu
, and
J.
Wu
, “
A three-dimensional explicit sphere function-based gas-kinetic flux solver for simulation of inviscid compressible flows
,”
J. Comput. Phys.
295
,
322
339
(
2015
).
53.
V.
Schmitt
and
F.
Charpin
, “
Pressure distributions on the ONERA-M6-wing at transonic Mach numbers
,” Experimental Data Base for Computer Program Assessment, Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138,
1979
.
54.
T.
Haga
,
H.
Gao
, and
Z. J.
Wang
, “
A high-order unifying discontinuous formulation for the Navier-Stokes equations on 3D mixed grids
,”
Math. Modell. Nat. Phenom.
6
,
28
56
(
2011
).
55.
S.
Taneda
, “
Experimental investigation of the wake behind a sphere at low Reynolds numbers
,”
J. Phys. Soc. Jpn.
11
,
1104
1108
(
1956
).
56.
J.
Cheng
,
X.
Liu
,
T.
Liu
, and
H.
Luo
, “
A parallel, high-order direct discontinuous Galerkin method for the Navier-Stokes equations on 3D hybrid grids
,”
Commun. Comput. Phys.
21
,
1231
1257
(
2017
).
57.
P.
Castonguay
, “
High-order energy stable flux reconstruction schemes for fluid flow simulations on unstructured grids
,” Ph.D. thesis,
Stanford University
,
2012
.
58.
T.
Nagata
,
T.
Nonomura
,
S.
Takahashi
,
Y.
Mizuno
, and
K.
Fukuda
, “
Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation
,”
Phys. Fluids
28
,
056101
(
2016
).
59.
H.
Riahi
,
M.
Meldi
,
J.
Favier
,
E.
Serre
, and
E.
Goncalves
, “
A pressure-corrected immersed boundary method for the numerical simulation of compressible flows
,”
J. Comput. Phys.
374
,
361
383
(
2018
).
60.
T.
Nagata
,
T.
Nonomura
,
S.
Takahashi
, and
K.
Fukuda
, “
Direct numerical simulation of subsonic, transonic and supersonic flow over an isolated sphere up to a Reynolds number of 1000
,”
J. Fluid Mech.
904
,
A36
(
2020
).
You do not currently have access to this content.