This study assesses the validity of two theories proposed to explain vortex breakdown occurring in swirling flows in pipes [Benjamin, J. Fluid Mech. 14, 593–629 (1962) and Wang and Rusak, J. Fluid Mech. 340, 177–223 (1997)]. Both model vortex breakdown as a steady, inviscid, streamwise transition between axisymmetric, cylindrical (streamwise-invariant) flow states, with the downstream “conjugate” state predicted differently by each based on the upstream inflow state. In this study, these conjugate solutions are computed for three distinct swirling inflow profiles by solving the Bragg–Hawthorne equation based on the inflow conditions. It is first shown that the “adjacent” conjugate solution proposed by Benjamin exhibits stronger flow reversal when the inflow swirl strength is decreased. This is in direct contradiction to trends observed in experiments, indicating that this aspect of the theory is invalid. Following this, the “global minimizer” conjugate solution proposed by Wang and Rusak is examined. In addition to numerical computations, an analytic expression for this conjugate solution is derived for the case of a Rankine vortex as the inflow. For various inflow profiles, it is shown that these conjugate solutions exhibit many trends similar to those observed in experiments. However, the results also indicate that the stagnation zone associated with these solutions expands radially in an unbounded fashion in the absence of confinement effects, implying that viscous effects might play a crucial role in limiting the radial expansion of the flow. Finally, based on these results and the inverse relationship between the swirl parameter and Mach number, it is argued that modeling vortex breakdown as directly analogous to a gasdynamic normal shock wave is erroneous.

1.
S.
Leibovich
, “
The structure of vortex breakdown
,”
Annu. Rev. Fluid Mech.
10
,
221
246
(
1978
).
2.
M. G.
Hall
, “
Vortex breakdown
,”
Annu. Rev. Fluid Mech.
4
,
195
218
(
1972
).
3.
M.
Escudier
, “
Vortex breakdown: Observations and explanations
,”
Prog. Aerosp. Sci.
25
,
189
229
(
1988
).
4.
T. B.
Benjamin
, “
Theory of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
593
629
(
1962
).
5.
G. L.
Brown
and
J. M.
Lopez
, “
Axisymmetric vortex breakdown. Part 2. Physical mechanisms
,”
J. Fluid Mech.
221
,
553
576
(
1990
).
6.
S.
Wang
and
Z.
Rusak
, “
The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown
,”
J. Fluid Mech.
340
,
177
223
(
1997
).
7.
V.
Shtern
and
F.
Hussain
, “
Collapse, symmetry breaking, and hysteresis in swirling flows
,”
Annu. Rev. Fluid Mech.
31
,
537
566
(
1999
).
8.
V. N.
Shtern
,
M.
del Mar Torregrosa
, and
M. A.
Herrada
, “
Effect of swirl decay on vortex breakdown in a confined steady axisymmetric flow
,”
Phys. Fluids
24
,
043601
(
2012
).
9.
M.
Sharma
and
A.
Sameen
, “
On the correlation between vortex breakdown bubble and planar helicity in Vogel–Escudier flow
,”
J. Fluid Mech.
888
,
A6
(
2020
).
10.
P.
Billant
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Experimental study of vortex breakdown in swirling jets
,”
J. Fluid Mech.
376
,
183
219
(
1998
).
11.
N.
Syred
and
J. M.
Beér
, “
Combustion in swirling flows: A review
,”
Combust. Flame
23
,
143
201
(
1974
).
12.
J. H.
Faler
and
S.
Leibovich
, “
Disrupted states of vortex flow and vortex breakdown
,”
Phys. Fluids
20
,
1385
1400
(
1977
).
13.
P.
Moise
and
J.
Mathew
, “
Bubble and conical forms of vortex breakdown in swirling jets
,”
J. Fluid Mech.
873
,
322
357
(
2019
).
14.
C.
Brücker
, “
Study of vortex breakdown by particle tracking velocimetry (PTV). Part 2: Spiral-type vortex breakdown
,”
Exp. Fluids
14
,
133
139
(
1993
).
15.
M. R.
Ruith
,
P.
Chen
,
E.
Meiburg
, and
T.
Maxworthy
, “
Three-dimensional vortex breakdown in swirling jets and wakes: Direct numerical simulation
,”
J. Fluid Mech.
486
,
331
378
(
2003
).
16.
F.
Gallaire
,
M.
Ruith
,
E.
Meiburg
,
J.-M.
Chomaz
, and
P.
Huerre
, “
Spiral vortex breakdown as a global mode
,”
J. Fluid Mech.
549
,
71
(
2006
).
17.
K.
Manoharan
,
M.
Frederick
,
S.
Clees
,
J.
O’Connor
, and
S.
Hemchandra
, “
A weakly nonlinear analysis of the precessing vortex core oscillation in a variable swirl turbulent round jet
,”
J. Fluid Mech.
884
,
A29
(
2020
).
18.
P.
Moise
, “
Bistability of bubble and conical forms of vortex breakdown in laminar swirling jets
,”
J. Fluid Mech.
889
,
A31
(
2020
).
19.
J. K.
Harvey
, “
Some observations of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
585
592
(
1962
).
20.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
1967
).
21.
S.
Leibovich
and
A.
Kribus
, “
Large-amplitude wavetrains and solitary waves in vortices
,”
J. Fluid Mech.
216
,
459
504
(
1990
).
22.
S.
Leibovich
and
J. D.
Randall
, “
Amplification and decay of long nonlinear waves
,”
J. Fluid Mech.
58
,
481
493
(
1973
).
23.
S.
Wang
and
Z.
Rusak
, “
On the stability of an axisymmetric rotating flow in a pipe
,”
Phys. Fluids
8
,
1007
1016
(
1996
).
24.
S.
Leibovich
, “
Vortex stability and breakdown: Survey and extension
,”
AIAA J.
22
,
1192
1206
(
1984
).
25.
K.
Oberleithner
,
C. O.
Paschereit
,
R.
Seele
, and
I.
Wygnanski
, “
Formation of turbulent vortex breakdown: Intermittency, criticality, and global instability
,”
AIAA J.
50
,
1437
1452
(
2012
).
26.
M.
Vanierschot
,
J. S.
Müller
,
M.
Sieber
,
M.
Percin
,
B. W.
van Oudheusden
, and
K.
Oberleithner
, “
Single- and double-helix vortex breakdown as two dominant global modes in turbulent swirling jet flow
,”
J. Fluid Mech.
883
,
A31
(
2020
).
27.
J. J.
Keller
,
W.
Egli
, and
J.
Exley
, “
Force- and loss-free transitions between flow states
,”
Z. Angew. Math. Phys.
36
,
854
889
(
1985
).
28.
V.
Shtern
,
F.
Hussain
, and
M.
Herrada
, “
New features of swirling jets
,”
Phys. Fluids
12
,
2868
2877
(
2000
).
29.
B.
Leclaire
and
D.
Sipp
, “
A sensitivity study of vortex breakdown onset to upstream boundary conditions
,”
J. Fluid Mech.
645
,
81
119
(
2010
).
30.
Y.
Zhang
,
Z.
Rusak
, and
S.
Wang
, “
Simulations of axisymmetric, inviscid swirling flows in circular pipes with various geometries
,”
J. Eng. Math.
119
,
69
91
(
2019
).
31.
Z.
Rusak
,
S.
Wang
, and
C.
Whiting
, “
Numerical computations of axisymmetric vortex breakdown in a pipe
,” in
34th Aerospace Sciences Meeting and Exhibit
(
AIAA
,
1996
).
32.
M. R.
Ruith
,
P.
Chen
, and
E.
Meiburg
, “
Development of boundary conditions for direct numerical simulations of three-dimensional vortex breakdown phenomena in semi-infinite domains
,”
Comput. Fluids
33
,
1225
1250
(
2004
).
33.
Z.
Rusak
,
C. H.
Whiting
, and
S.
Wang
, “
Axisymmetric breakdown of a Q-vortex in a pipe
,”
AIAA J.
36
,
1848
1853
(
1998
).
34.
P.
Moise
and
J.
Mathew
, “
Hysteresis and turbulent vortex breakdown in transitional swirling jets
,” (unpublished) (
2020
).
35.
L. E.
Fraenkel
, “
On Benjamin’s theory of conjugate vortex flows
,”
J. Fluid Mech.
28
,
85
(
1967
).
36.
J. D.
Randall
and
S.
Leibovich
, “
The critical state: A trapped wave model of vortex breakdown
,”
J. Fluid Mech.
58
,
495
515
(
1973
).
37.
H. W.
Liepmann
and
A.
Roshko
,
Elements of Gas Dynamics
(
Dover
,
2002
).
38.
L. G.
Reyna
and
S.
Menne
, “
Numerical prediction of flow in slender vortices
,”
Comput. Fluids
16
,
239
256
(
1988
).
You do not currently have access to this content.