One-dimensional numerical simulations based on the hybrid Eulerian–Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas–droplet flows. Two-way coupling for interphase exchanges of mass, momentum, and energy is adopted. A parametric study on shock attenuation, droplet evaporation, motion, and heating is conducted, through considering various initial droplet diameters (5 µm–20 µm), number densities (2.5 × 1011/m3–2 × 1012/m3), and incident shock Mach numbers (1.17–1.9). It is found that the leading shock may be attenuated to the sonic wave and even to the subsonic wave when the droplet volume fraction is large and/or the incident shock Mach number is low. Attenuation in both strength and propagation speed of the leading shock is mainly caused by momentum transfer to the droplets that interact at the shock front. Total pressure recovery is observed in the evaporation region, whereas pressure loss results from shock compression, droplet drag, and pressure gradient force behind the shock front. Recompression of the region between the leading shock and the two-phase contact surface is observed when the following compression wave is supersonic. After a critical point, this region gets stable in width and interphase exchanges in mass, momentum, and energy. However, the recompression phenomenon is sensitive to the droplet volume fraction and may vanish with high droplet loading. For an incident shock Mach number of 1.6, recompression only occurs when the initial droplet volume fraction is below 3.28 × 10−5.

1.
W.
Lu
,
W.
Fan
,
K.
Wang
,
Q.
Zhang
, and
Y.
Chi
, “
Operation of a liquid-fueled and valveless pulse detonation rocket engine at high frequency
,”
Proc. Combust. Inst.
36
,
2657
2664
(
2017
).
2.
S. M.
Frolov
,
V. S.
Aksenov
,
V. S.
Ivanov
, and
I. O.
Shamshin
, “
Continuous detonation combustion of ternary ‘hydrogen–liquid propane–air’ mixture in annular combustor
,”
Int. J. Hydrogen Energy
42
,
16808
16820
(
2017
).
3.
H.
Watanabe
,
A.
Matsuo
,
A.
Chinnayya
,
K.
Matsuoka
,
A.
Kawasaki
, and
J.
Kasahara
, “
Numerical analysis of the mean structure of gaseous detonation with dilute water spray
,”
J. Fluid Mech.
887
,
A4
(
2020
).
4.
D. R.
Haylett
,
P. P.
Lappas
,
D. F.
Davidson
, and
R. K.
Hanson
, “
Application of an aerosol shock tube to the measurement of diesel ignition delay times
,”
Proc. Combust. Inst.
32
,
477
484
(
2009
).
5.
J.
Santner
and
S. S.
Goldsborough
, “
Hot-spot induced mild ignition: Numerical simulation and scaling analysis
,”
Combust. Flame
209
,
41
62
(
2019
).
6.
Y.
Haruki
,
A. L.
Pillai
,
T.
Kitano
, and
R.
Kurose
, “
Numerical investigation of flame propagation in fuel droplet arrays
,”
Atomization Sprays
28
,
357
388
(
2018
).
7.
J.
Kersey
,
E.
Loth
, and
D.
Lankford
, “
Effect of evaporating droplets on shock waves
,”
AIAA J.
48
,
1975
1986
(
2010
).
8.
A.
Chauvin
,
G.
Jourdan
,
E.
Daniel
,
L.
Houas
, and
R.
Tosello
, “
Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium
,”
Phys. Fluids
23
,
113301
(
2011
).
9.
Y.
Liang
,
Y.
Jiang
,
C.-Y.
Wen
, and
Y.
Liu
, “
Interaction of a planar shock wave and a water droplet embedded with a vapour cavity
,”
J. Fluid Mech.
885
,
R6
(
2020
).
10.
A.
Kobiera
,
J.
Szymczyk
,
P.
Wolański
, and
A.
Kuhl
, “
Study of the shock-induced acceleration of hexane droplets
,”
Shock Waves
18
,
475
485
(
2009
).
11.
G.
Jourdan
,
L.
Biamino
,
C.
Mariani
,
C.
Blanchot
,
E.
Daniel
,
J.
Massoni
,
L.
Houas
,
R.
Tosello
, and
D.
Praguine
, “
Attenuation of a shock wave passing through a cloud of water droplets
,”
Shock Waves
20
,
285
296
(
2010
).
12.
G.
Gai
,
O.
Thomine
,
A.
Hadjadj
, and
S.
Kudriakov
, “
Modeling of particle cloud dispersion in compressible gas flows with shock waves
,”
Phys. Fluids
32
,
023301
(
2020
).
13.
W. A.
Sirignano
, , 2nd ed. (
Cambridge University Press, Cambridge, 2010
), pp.
409
414
.
14.
G. B.
Macpherson
,
N.
Nordin
, and
H. G.
Weller
, “
Particle tracking in unstructured, arbitrary polyhedral meshes for use in CFD and molecular dynamics
,”
Commun. Numer. Methods Eng.
25
,
263
273
(
2009
).
15.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
1998
).
16.
A.
Tarnogrodzki
, “
Theoretical prediction of the critical weber number
,”
Int. J. Multiphase Flow
19
,
329
336
(
1993
).
17.
R. H.
Perry
,
D. W.
Green
, and
J. O.
Maloney
,
Perry’s Chemical Engineers’ Handbook
, 7th ed. (
Choice Reviews Online
,
1998
).
18.
B.
Abramzon
and
W. A.
Sirignano
, “
Droplet vaporization model for spray combustion calculations
,”
Int. J. Heat Mass Transfer
32
,
1605
1618
(
1989
).
19.
Z.
Huang
,
M.
Zhao
, and
H.
Zhang
, “
Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen
,”
Fuel
264
,
116809
(
2020
).
20.
E. N.
Fuller
,
P. D.
Schettler
, and
J. C.
Giddings
, “
New method for prediction of binary gas-phase diffusion coefficients
,”
Ind. Eng. Chem.
58
,
18
27
(
1966
).
21.
E. L.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems
, 3rd ed. (
Cambridge University Press
,
2009
).
22.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops—Part I
,”
Chem. Eng. Prog.
48
,
141
146
(
1952
).
23.
A. B.
Liu
,
D.
Mather
, and
R. D.
Reitz
, “
Modeling the effects of drop drag and breakup on fuel sprays
,” SAE Technical Paper No. 930072,
2010
.
24.
S.
Cheatham
and
K.
Kailasanath
, “
Numerical modelling of liquid-fuelled detonations in tubes
,”
Combust. Theory Modell.
9
,
23
48
(
2005
).
25.
B. E.
Poling
,
J. M.
Prausnitz
, and
J. P.
O’connell
,
The Properties of Gases and Liquids
, 5th ed. (
McGraw-Hill, New York
,
2000
).
26.
See https://Blog.Nus.Edu.Sg/Huangwei/Nus-Ryrhocentralfoam-Solver/ for more information about the development and validation of the RYrhoCentralFoam solver.
27.
C. J.
Greenshields
,
H. G.
Weller
,
L.
Gasparini
, and
J. M.
Reese
, “
Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows
,”
Int. J. Numer. Methods Fluids
63
,
1
21
(
2010
).
28.
H.
Jasak
, “
Error analysis and estimation for the finite volume method with applications to fluid flows
,” Ph.D. thesis,
Imperial College London
,
1996
.
29.
A.
Kurganov
,
S.
Noelle
, and
G.
Petrova
, “
Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations
,”
SIAM J. Sci. Comput.
23
,
707
740
(
2001
).
30.
P. L.
Roe
, “
Characteristic-based schemes for the Euler equations
,”
Annu. Rev. Fluid Mech.
18
,
337
365
(
1986
).
31.
H.
Zhang
,
M.
Zhao
, and
Z.
Huang
, “
Large eddy simulation of turbulent supersonic hydrogen flames with OpenFOAM
,”
Fuel
282
,
118812
(
2020
).
32.
Z.
Huang
and
H.
Zhang
, “
Numerical investigations of mixed supersonic and subsonic combustion modes in a model combustor
,”
Int. J. Hydrogen Energy
45
,
1045
1060
(
2020
).
33.
Z.
Huang
and
H.
Zhang
, “
Investigations of autoignition and propagation of supersonic ethylene flames stabilized by a cavity
,”
Appl. Energy
265
,
114795
(
2020
).
34.
M.
Zhao
,
J.-M.
Li
,
C. J.
Teo
,
B. C.
Khoo
, and
H.
Zhang
, “
Effects of variable total pressures on instability and extinction of rotating detonation combustion
,”
Flow Turbul. Combust.
104
,
261
290
(
2020
).
35.
Z.
Huang
,
M.
Zhao
,
Y.
Xu
,
G.
Li
, and
H.
Zhang
, “
Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications
,”
Fuel
286
,
119402
(
2021
).
36.
T. C.
Hanson
,
D. F.
Davidson
, and
R. K.
Hanson
, “
Shock-induced behavior in micron-sized water aerosols
,”
Phys. Fluids
19
,
056104
(
2007
).
37.
C. T.
Crowe
, “
Review—Numerical models for dilute gas-particle flows
,”
J. Fluids Eng.
104
,
297
303
(
1982
).
38.
O.
Igra
and
G.
Ben-Dor
, “
Dusty shock waves
,”
Appl. Mech. Rev.
41
,
379
437
(
1988
).
39.
E. J.
Chang
and
K.
Kailasanath
, “
Shock wave interactions with particles and liquid fuel droplets
,”
Shock Waves
12
,
333
341
(
2003
).
40.
H. W. J.
Goossens
,
J. W.
Cleijne
,
H. J.
Smolders
, and
M. E. H.
van Dongen
, “
Shock wave induced evaporation of water droplets in a gas-droplet mixture
,”
Exp. Fluids
6
,
561
568
(
1988
).
41.
H. J.
Smolders
and
M. E. H.
van Dongen
, “
Shock wave structure in a mixture of gas, vapour and droplets
,”
Shock Waves
2
,
255
267
(
1992
).
42.
G.-S.
Yeom
and
K.-S.
Chang
, “
Shock wave diffraction about a wedge in a gas-microdroplet mixture
,”
Int. J. Heat Mass Transfer
53
,
5073
5088
(
2010
).
43.
H.
Watanabe
,
A.
Matsuo
,
K.
Matsuoka
,
A.
Kawasaki
, and
J.
Kasahara
, “
Numerical investigation on propagation behavior of gaseous detonation in water spray
,”
Proc. Combust. Inst.
37
,
3617
3626
(
2019
).
You do not currently have access to this content.