In this study, the agglomeration of settling particles in a dewatering process is studied numerically. The numerical model is based on the smoothed particle hydrodynamic method. The interaction between solid particles is governed by the Lennard-Jones potential. This paper presents a systematic study for evaluating the influence of various important parameters on the dewatering process, i.e., the Reynolds number, inter-particle pair potential, and phase loading. Several quantitative parameters are introduced to characterize the structure and behavior of agglomerates. It is observed that based on the interplay between the Reynolds number and the pair potential, the agglomerates form four different structures.

1.
A.
Chaudhury
,
D.
Barrasso
,
D.
Pohlman
,
J.
Litster
, and
R.
Ramachandran
,
Mechanistic Modelling of High-Shear and Twin Screw Mixer Granulation Processes, Predictive Modeling of Pharmaceutical Unit Operations
(
Woodhead Publishing
,
2017
), pp.
99
135
.
2.
R.
Gupta
,
Fluid Bed Granulation and Drying
(
Predictive Modeling of Pharmaceutical Unit Operations Woodhead Publishing
,
2017
), pp.
137
158
.
3.
A.
Shah
and
A.
Serajuddin
,
Twin Screw Continuous Wet Granulation, Handbook of Pharmaceutical Wet Granulation
(
Academic Press
,
2019
), pp.
791
823
.
4.
A.
Hellestø
,
M.
Ghaffari
,
B.
Balakin
, and
A.
Hoffmann
, “
A parametric study of cohesive particle agglomeration in a shear flow—Numerical simulations by the discrete element method
,”
J. Dispersion Sci. Technol.
38
,
611
620
(
2017
).
5.
D.
Dogon
and
M.
Golombok
, “
Particle agglomeration in sheared fluids
,”
J. Pet. Explor. Prod. Technol.
5
,
91
98
(
2015
).
6.
M.
Breuer
and
N.
Almohammed
, “
Modeling and simulation of particle agglomeration in turbulent flows using a hard-sphere model with deterministic collision detection and enhanced structure models
,”
Int. J. Multiphase Flow
73
,
171
206
(
2015
).
7.
M.
Kroupa
,
M.
Vonka
,
M.
Soos
, and
J.
Kosek
, “
Size and structure of clusters formed by shear induced coagulation: Modeling by discrete element method
,”
Langmuir
31
,
7727
7737
(
2015
).
8.
A.
Patwa
,
R. P. K.
Ambrose
, and
M. E.
Casada
, “
Discrete element method as an approach to model the wheat milling process
,”
Powder Technol.
302
,
350
356
(
2016
).
9.
S.
Chimmili
,
D.
Doraiswamy
, and
R. K.
Gupta
, “
Shear-induced agglomeration of particulate suspensions
,”
Ind. Eng. Chem. Res.
37
,
2073
2077
(
1998
).
10.
R. D.
Cohen
, “
Effect of interaction energy on floc structure
,”
AIChE J.
33
,
1571
1575
(
1987
).
11.
K.
Muhle
,
Coagulation and Flocculation: Theory and Applications
, Surfactant Science Series (
CRC Press
,
Boca Raton
,
1993
), pp.
355
390
.
12.
A.
Rahmat
,
M.
Barigou
, and
A.
Alexiadis
, “
Numerical simulation of dissolution of solid particles in fluid flow using the SPH method
,”
Int. J. Numer. Methods Heat Fluid Flow
30
,
290
307
(
2019
).
13.
R. A.
Gingold
and
J. J.
Monaghan
, “
Smoothed particle hydrodynamics: Theory and application to non-spherical stars
,”
Mon. Not. R. Astron. Soc.
181
,
375
389
(
1977
).
14.
J. J.
Monaghan
, “
Simulating free surface flows with SPH
,”
J. Comput. Phys.
110
,
399
406
(
1994
).
15.
M. S.
Shadloo
,
A.
Rahmat
, and
M.
Yildiz
, “
A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid
,”
Comput. Mech.
52
,
693
707
(
2013
).
16.
M. S.
Shadloo
,
G.
Oger
, and
D.
Le Touzé
, “
Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges
,”
Comput. Fluids
136
,
11
34
(
2016
).
17.
A.
Rahmat
,
N.
Tofighi
, and
M.
Yildiz
, “
Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method
,”
Int. J. Heat Fluid Flow
62
,
313
323
(
2016
).
18.
A.
Rahmat
,
N.
Tofighi
,
M. S.
Shadloo
, and
M.
Yildiz
, “
Numerical simulation of wall bounded and electrically excited Rayleigh–Taylor instability using incompressible smoothed particle hydrodynamics
,”
Colloids Surf., A
460
,
60
70
(
2014
).
19.
H.
Gotoh
,
A.
Khayyer
,
H.
Ikari
,
T.
Arikawa
, and
K.
Shimosako
, “
On enhancement of incompressible SPH method for simulation of violent sloshing flows
,”
Appl. Ocean Res.
46
,
104
115
(
2014
).
20.
M. S.
Shadloo
,
A.
Zainali
,
S. H.
Sadek
, and
M.
Yildiz
, “
Improved incompressible smoothed particle hydrodynamics method for simulating flow around bluff bodies
,”
Comput. Methods Appl. Mech. Eng.
200
,
1008
1020
(
2011
).
21.
A.
Rahmat
,
H.
Nasiri
,
M.
Goodarzi
, and
E.
Heidaryan
, “
Numerical investigation of anguilliform locomotion by the SPH method
,”
Int. J. Numer. Methods Heat Fluid Flow
30
,
328
346
(
2019
).
22.
L. B.
Lucy
, “
A numerical approach to the testing of the fission hypothesis
,”
Astron. J.
82
,
1013
1024
(
1977
).
23.
A.
Rahmat
,
M.
Barigou
, and
A.
Alexiadis
, “
Deformation and rupture of compound cells under shear: A discrete multiphysics study
,”
Phys. Fluids
31
,
051903
(
2019
).
24.
A.
Gupta
and
D.
Yan
,
Mineral Processing Design and Operations: An Introduction
(
Elsevier
,
2016
), pp.
421
469
.
25.
A.
Alexiadis
,
S.
Ghraybeh
, and
G.
Qiao
, “
Natural convection and solidification of phase-change materials in circular pipes: A SPH approach
,”
Comput. Mater. Sci.
150
,
475
483
(
2018
).
26.
M.
Ariane
,
D.
Vigolo
,
A.
Brill
,
F. G. B.
Nash
,
M.
Barigou
, and
A.
Alexiadis
, “
Using discrete multi-physics for studying the dynamics of emboli in flexible venous valves
,”
Comput. Fluids
166
,
57
63
(
2018
).
27.
M.
Ariane
,
S.
Kassinos
,
S.
Velaga
, and
A.
Alexiadis
, “
Discrete multi-physics simulations of diffusive and convective mass transfer in boundary layers containing motile cilia in lungs
,”
Comput. Biol. Med.
95
,
34
42
(
2018
).
28.
M.
Schütt
,
K.
Stamatopoulos
,
M. J. H.
Simmons
,
H. K.
Batchelor
, and
A.
Alexiadis
, “
Modelling and simulation of the hydrodynamics and mixing profiles in the human proximal colon using discrete multiphysics
,”
Comput. Biol. Med.
121
,
103819
(
2020
).
29.
Y.
Xia
,
H.
Xiong
,
Z.
Yu
, and
C.
Zhu
, “
Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows
,”
Phys. Fluids
32
,
103303
(
2020
).
30.
A.
Xu
,
S.
Tao
,
L.
Shi
, and
H.-D.
Xi
, “
Transport and deposition of dilute microparticles in turbulent thermal convection
,”
Phys. Fluids
32
,
083301
(
2020
).
31.
H.
Li
,
X.
Ku
, and
J.
Lin
, “
Eulerian–Lagrangian simulation of inertial migration of particles in circular Couette flow
,”
Phys. Fluids
32
,
073308
(
2020
).
32.
S.
Blott
and
K.
Pye
, “
Particle shape: A review and new methods of characterization and classification
,”
Sedimentology
55
,
31
63
(
2008
).
You do not currently have access to this content.