A new model for the numerical simulation of a rigid body moving in a viscous fluid flow using the finite element method is presented. One of the most interesting features of this approach is the small computational effort required to solve the motion of the rigid body, comparable to a pure fluid solver. The model is based on the idea of extending the fluid velocity inside the rigid body and solving the flow equations with a penalty term to enforce rigid motion inside the solid. In order to get the velocity field in the fluid domain, the Navier–Stokes equations for an incompressible viscous flow are solved using a fractional-step procedure combined with the two-step Taylor–Galerkin algorithm for the fractional linear momentum. Once the velocity field in the fluid domain is computed, calculation of the rigid motion is obtained by averaging translation and angular velocities over the solid. One of the main challenges when dealing with the fluid–solid interaction is the proper modeling of the interface that separates the solid moving mass from the viscous fluid. In this work, the combination of the level set technique and the two-step Taylor–Galerkin algorithm for tracking the fluid–solid interface is proposed. The characteristics exhibited by the two-step Taylor–Galerkin, minimizing oscillations and numerical diffusion, make this method suitable to accurately advect the solid domain, avoiding distortions at its boundaries and, thus, preserving the initial size and shape of the rigid body. The proposed model has been validated against empirical solutions, experimental data, and numerical simulations found in the literature. In all tested cases, the numerical results have shown to be accurate, proving the potential of the proposed model as a valuable tool for the numerical analysis of the fluid–solid interaction.

1.
A. A.
Johnson
and
T. E.
Tezduyar
, “
Simulation of multiple spheres falling in a liquid-filled tube
,”
Comput. Methods Appl. Mech. Eng.
134
,
351
373
(
1996
).
2.
H. H.
Hu
,
D. D.
Joseph
, and
M. J.
Crochet
, “
Direct simulation of fluid particle motions
,”
Theor. Comput. Fluid Dyn.
3
,
285
306
(
1992
).
3.
H. H.
Hu
, “
Direct simulation of flows of solid-liquid mixtures
,”
Int. J. Multiphase Flow
22
,
335
352
(
1996
).
4.
H. H.
Hu
,
N. A.
Patankar
, and
M. Y.
Zhu
, “
Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian-Eulerian technique
,”
J. Comput. Phys.
169
,
427
462
(
2001
).
5.
M.
Behr
and
T.
Tezduyar
, “
The shear-slip mesh update method
,”
Comput. Methods Appl. Mech. Eng.
174
,
261
274
(
1999
).
6.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
7.
L.
Zhu
,
G.
He
,
S.
Wang
,
L.
Miller
,
X.
Zhang
,
Q.
You
, and
S.
Fang
, “
An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application
,”
Comput. Math. Appl.
61
(
12
),
3506
3518
(
2011
).
8.
S.-G.
Cai
,
A.
Ouahsine
,
J.
Favier
, and
Y.
Hoarau
, “
Moving immersed boundary method
,”
Int. J. Numer. Methods Fluids
85
,
288
323
(
2017
).
9.
K.
Taira
and
T.
Colonius
, “
The immersed boundary method: A projection approach
,”
J. Comput. Phys.
225
,
2118
2137
(
2007
).
10.
R.
Glowinski
,
T.-W.
Pan
,
T. I.
Hesla
,
D. D.
Joseph
, and
J.
Periaux
, “
A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of particulate flow
,”
Contemp. Math.
218
,
121
137
(
1998
).
11.
R.
Glowinski
,
T. W.
Pan
,
T. I.
Hesla
,
D. D.
Joseph
, and
J.
Périaux
, “
A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow
,”
J. Comput. Phys.
169
,
363
426
(
2001
).
12.
C.
Diaz-Goano
,
P. D.
Minev
, and
K.
Nandakumar
, “
A fictitious domain/finite element method for particulate flows
,”
J. Comput. Phys.
192
,
105
123
(
2003
).
13.
L. H.
Juárez
, “
Numerical simulation of the sedimentation of an elliptic body in an incompressible viscous fluid
,”
C. R. Acad. Sci., Ser. IIb: Mec.
329
,
221
224
(
2001
).
14.
T.-W.
Pan
,
D. D.
Joseph
,
R.
Bai
,
R.
Glowinski
, and
V.
Sarin
, “
Fluidization of 1204 spheres: Simulation and experiment
,”
J. Fluid Mech.
451
,
169
191
(
2002
).
15.
N.
Sharma
and
N. A.
Patankar
, “
A fast computation technique for the direct numerical simulation of rigid particulate flows
,”
J. Comput. Phys.
205
,
439
457
(
2005
).
16.
M.
Coquerelle
and
G.-H.
Cottet
, “
A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies
,”
J. Comput. Phys.
227
(
21
),
9121
9137
(
2008
).
17.
D.
Qi
, “
Simulations of fluidization of cylindrical multiparticles in a three-dimensional space
,”
Int. J. Multiphase Flow
27
,
107
118
(
2001
).
18.
Z.-G.
Feng
and
E. E.
Michaelides
, “
Proteus: A direct forcing method in the simulations of particulate flows
,”
J. Comput. Phys.
202
,
20
51
(
2005
).
19.
A.
ten Cate
,
C. H.
Nieuwstad
,
J. J.
Derksen
, and
H. E. A.
Van den Akker
, “
Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity
,”
Phys. Fluids
14
,
4012
4025
(
2002
).
20.
M.
Benamour
,
E.
Liberge
, and
C.
Béghein
, “
A volume penalization lattice Boltzmann method for simulating flows in the presence of obstacles
,”
J. Comput. Sci.
39
,
101050
(
2020
).
21.
B.
Nayroles
,
G.
Touzot
, and
P.
Villon
, “
Generalizing the finite element method: Diffuse approximation and diffuse elements
,”
Comput. Mech.
10
,
307
318
(
1992
).
22.
T.
Belytschko
,
Y. Y.
Lu
, and
L.
Gu
, “
Element-free Galerkin methods
,”
Int. J. Numer. Methods Eng.
37
,
229
256
(
1994
).
23.
T.
Belytschko
,
Y.
Krongauz
,
D.
Organ
,
M.
Fleming
, and
P.
Krysl
, “
Meshless methods: An overview and recent developments
,”
Comput. Methods Appl. Mech. Eng.
139
,
3
47
(
1996
).
24.
W. K.
Liu
,
S.
Jun
, and
Y. F.
Zhang
, “
Reproducing kernel particle methods
,”
Int. J. Numer. Methods Fluids
20
,
1081
1106
(
1995
).
25.
J.-S.
Chen
,
C.
Pan
,
C.-T.
Wu
, and
W. K.
Liu
, “
Reproducing kernel particle methods for large deformation analysis of non-linear structures
,”
Comput. Methods Appl. Mech. Eng.
139
,
195
227
(
1996
).
26.
C. A.
Duarte
and
J. T.
Oden
, “
An h-p adaptive method using clouds
,”
Comput. Methods Appl. Mech. Eng.
139
,
237
262
(
1996
).
27.
I.
Babuška
and
J. M.
Melenk
, “
The partition of unity method
,”
Int. J. Numer. Methods Eng.
40
,
727
758
(
1997
).
28.
S. N.
Atluri
and
T.
Zhu
, “
A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics
,”
Comput. Mech.
22
,
117
127
(
1998
).
29.
E.
Oñate
and
S.
Idelsohn
, “
A mesh-free finite point method for advective-diffusive transport and fluid flow problems
,”
Comput. Mech.
21
,
283
292
(
1998
).
30.
R. L.
Hardy
, “
Multiquadric equations of topography and other irregular surfaces
,”
J. Geophys. Res.
76
(
8
),
1905
1915
, (
1971
).
31.
E. J.
Kansa
, “
Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations
,”
Comput. Math. Appl.
19
(
8-9
),
147
161
(
1990
).
32.
L. B.
Lucy
, “
A numerical approach to the testing of the fission hypothesis
,”
Astron. J.
82
,
1013
1024
(
1977
).
33.
R. A.
Gingold
and
J. J.
Monaghan
, “
Smoothed particle hydrodynamics: Theory and application to non-spherical stars
,”
Mon. Not. R. Astron. Soc.
181
,
375
389
(
1977
).
34.
J. J.
Monaghan
, “
An introduction to SPH
,”
Comput. Phys. Commun.
48
,
89
96
(
1988
).
35.
J. J.
Monaghan
, “
Simulating free surface flows with SPH
,”
J. Comput. Phys.
110
,
399
406
(
1994
).
36.
J. P.
Morris
,
P. J.
Fox
, and
Y.
Zhu
, “
Modeling low Reynolds number incompressible flows using SPH
,”
J. Comput. Phys.
136
,
214
226
(
1997
).
37.
J. J.
Monaghan
and
A.
Kocharyan
, “
SPH simulation of multi-phase flow
,”
Comput. Phys. Commun.
87
,
225
235
(
1995
).
38.
G. R.
Liu
and
M. B.
Liu
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
(
World Scientific Publishing
,
Singapore
,
2003
).
39.
M. I.
Herreros
and
M.
Mabssout
, “
A two-steps time discretization scheme using the SPH method for shock wave propagation
,”
Comput. Methods Appl. Mech. Eng.
200
,
1833
1845
(
2011
).
40.
M.
Mabssout
and
M. I.
Herreros
, “
Runge–Kutta vs Taylor-SPH: Two time integration schemes for SPH with application to soil dynamics
,”
Appl. Math. Modell.
37
(
5
),
3541
3563
(
2013
).
41.
M.
Mabssout
and
M. I.
Herreros
, “
Taylor-SPH vs Taylor-Galerkin for shock waves in viscoplastic continua
,”
Eur. J. Comput. Mech.
20
,
281
308
(
2011
).
42.
M.
Mabssout
,
M. I.
Herreros
, and
H.
Idder
, “
Predicting dynamic fracture in viscoplastic materials using Taylor-SPH
,”
Int. J. Impact Eng.
87
,
95
107
(
2016
).
43.
H. K.
Serroukh
,
M.
Mabssout
, and
M. I.
Herreros
, “
Updated Lagrangian Taylor-SPH method for large deformation in dynamic problems
,”
Appl. Math. Modell.
80
,
238
256
(
2020
).
44.
A. J.
Chorin
, “
Numerical solution of incompressible flow problems
,”
Stud. in Numer. Anal.
2
,
64
71
(
1968
).
45.
L.-H.
Zhao
,
T.-C.
Li
,
L.
Wang
,
M. I.
Herreros
, and
M.
Pastor
, “
Fractional-step finite element method for calculation of 3-D free surface problem using level set method
,”
J. Hydrodyn.
18
(
6
),
742
747
(
2006
).
46.
J.
Donea
, “
A Taylor–Galerkin method for convective transport problems
,”
Int. J. Numer. Methods Eng.
20
,
101
119
(
1984
).
47.
J.
Peraire
, “
A finite element method for convection dominated flows
,” Ph.D. thesis,
University of Wales
,
Swansea
,
1986
.
48.
J.
Peraire
,
O. C.
Zienkiewicz
, and
K.
Morgan
, “
Shallow water problems: A general explicit formulation
,”
Int. J. Numer. Methods Eng.
22
,
547
574
(
1986
).
49.
O. C.
Zienkiewicz
,
R. L.
Taylor
, and
J. Z.
Zhu
,
The Finite Element Method
, 6th ed. (
Butterworth-Heinemann
,
2005
), Vol. 1-3.
50.
M.
Mabssout
and
M.
Pastor
, “
A two-step Taylor–Galerkin algorithm applied to shock wave propagation in soils
,”
Int. J. Numer. Anal. Methods Geomech.
27
,
685
704
(
2003
).
51.
M.
Mabssout
and
M.
Pastor
, “
A Taylor–Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua
,”
Comput. Methods Appl. Mech. Eng.
192
,
955
971
(
2003
).
52.
M.
Mabssout
,
M.
Pastor
,
M. I.
Herreros
, and
M.
Quecedo
, “
A Runge–Kutta, Taylor–Galerkin scheme for hyperbolic systems with source terms. Application to shock wave propagation in viscoplastic geomaterials
,”
Int. J. Numer. Anal. Methods Geomech.
30
(
13
),
1337
1355
(
2005
).
53.
A.
Safjan
and
J. T.
Oden
, “
High-order Taylor-Galerkin and adaptive h-p methods for second-order hyperbolic systems: Application to elastodynamics
,”
Comput. Methods Appl. Mech. Eng.
103
,
187
230
(
1993
).
54.
K.
Tamma
and
R.
Namburu
, “
Explicit second-order accurate Taylor-Galerkin-based finite-element formulations for linear/nonlinear transient heat transfer
,”
Numer. Heat Transfer
13
,
409
426
(
1988
).
55.
K. K.
Tamma
and
R. R.
Namburu
, “
A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics
,”
Comput. Methods Appl. Mech. Eng.
71
,
137
150
(
1988
).
56.
K. K.
Tamma
and
R. R.
Namburu
, “
An explicit velocity based Lax-Wendroff/Taylor-Galerkin methodology of computation for the dynamics of structures
,”
Comput. Struct.
30
(
5
),
1017
1024
(
1989
).
57.
S.
Osher
and
J. A.
Sethian
, “
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
,”
J. Comput. Phys.
79
,
12
49
(
1988
).
58.
M. I.
Herreros
,
M.
Mabssout
, and
M.
Pastor
, “
Application of level-set approach to moving interfaces and free surface problems in flow through porous media
,”
Comput. Methods Appl. Mech. Eng.
195
(
1-3
),
1
25
(
2006
).
59.
S.
Osher
and
R.
Fedkiw
,
Level Set Methods and Dynamic Implicit Surfaces
(
Springer-Verlag
,
New York
,
2003
).
60.
J. A.
Sethian
,
Level Set Methods. Evolving Interphases in Geometry, Fluid Mechanics, Computer Vision, and Material Science
(
Cambridge University Press
,
1996
).
61.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
159
(
1994
).
62.
P.
Angot
,
C.-H.
Bruneau
, and
P.
Fabrie
, “
A penalization method to take into account obstacles in incompressible viscous flows
,”
Numer. Math.
81
,
497
520
(
1999
).
63.
G.
Carbou
and
P.
Fabrie
, “
Boundary layer for a penalization method for viscous incompressible flow
,”
Adv. Differ. Equations
8
,
1453
2480
(
2003
), see https://projecteuclid.org/euclid.ade/1355867981.
64.
T.
Engels
,
D.
Kolomenskiy
,
K.
Schneider
, and
J.
Sesterhenn
, “
Numerical simulation of fluid–structure interaction with the volume penalization method
,”
J. Comput. Phys.
281
,
96
115
(
2015
).
65.
C.
Jause-Labert
, “
Simulation numerique d’ecoulements turbulents en rotation, confinement et forcage a l’aide d’une methode de penalisation
,” Ph.D. thesis,
Ecole centrale de Lyon
,
2012
.
66.
D.
Kolomenskiy
and
K.
Schneider
, “
A Fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles
,”
J. Comput. Phys.
228
,
5687
5709
(
2009
).
67.
R. P.
Fedkiw
,
T.
Aslam
,
B.
Merriman
, and
S.
Osher
, “
A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost fluid method)
,”
J. Comput. Phys.
152
(
2
),
457
492
(
1999
).
68.
M.
Quecedo
,
M.
Pastor
, and
M. I.
Herreros
, “
Numerical modelling of impulse wave generated by fast landslides
,”
Int. J. Numer. Methods Eng.
59
(
12
),
1633
1656
(
2004
).
69.
I.
Babuska
, “
The finite element method with Lagrange multipliers
,”
Numer. Math.
20
,
179
192
(
1973
).
70.
F.
Brezzi
, “
On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers
,”
Modél. Math. Anal. Numér.
8
(
R2
),
129
151
(
1974
).
71.
G. E.
Schneider
,
G. D.
Raithby
, and
M. M.
Yovanovich
, “
Finite element analysis of incompressible flow incorporating equal order pressure and velocity interpolation
,” in
Numerical Methods for Laminar and Turbulent Flow
, edited by
C.
Taylor
,
K.
Morgan
, and
C.
Brebbia
(
Pentech Press
,
Plymouth
,
1978
).
72.
A.
Roshko
, “
On the drag and shedding frequency of two-dimensional bluff bodies
,” Technical Report No. TN 3169,
NACA, US Government Printing Office
,
Washington, DC
,
1954
.
73.
A.
Roshko
,
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number
(
California Institute of Technology
,
CA, USA
,
1960
).
74.
C.
Wieselberg
, “
New data on the laws of fluid resistance
,” Report No. NACA-TN-84,
National Advisory Committee For Aeronautics
,
1922
.
75.
M.
Zdravkovich
, “
A critical remark on use of drag coefficient at low Reynolds numbers
,” in
Recueil des travaux de l’Institut Mathématique
, Nouvelle serie, (
Institut Mathematique
,
1979
), Vol. 3(11).
76.
R.
Mittal
,
Large-Eddy Simulation of Flow Past a Circular Cylinder
(
Center for Turbulence Research
,
Kanpur, India
,
1995
).
77.
P. R.
Spalart
and
A.
Leonard
, “
Numerical simulation of separated flows
,” NASA Technical Memorandum 84328,
1983
.
78.
Y.
Nakayama
and
R. F.
Boucher
,
Introduction to Fluid Mechanics
(
Butterworth Heinmann
,
1999
).
79.
M.
Van Dyke
,
An Album of Fluid Motion
(
The Parabolic Press
,
Stanford, CA, USA
,
1988
).
80.
B. R.
Munson
and
D. R.
Young
,
Fundamental of Fluid Mechanics
, 5th ed. (
John Wiley & Sons, Inc.
,
2006
).
81.
F. M.
White
,
Fluid Mechanics
, 7th ed. (
McGraw-Hill
,
2011
).
82.
F. L.
Ponta
and
H.
Aref
, “
A Strouhal–Reynolds number relationship for vortex streets
,”
Phys. Rev. Lett.
93
,
084501
(
2004
).
83.
J. F.
Douglas
,
J. M.
Gasiorek
,
J. A.
Swaffield
, and
L. B.
Jack
,
Fluid Mechanics
, 5th ed. (empirical formula due to Vincent Strouhal) (
Pearson-Prentice Hall
,
2005
), Chap. 12, Sec. 12.5, pp.
407
408
.
84.
N. D.
Katopodes
, “
Free-surface flow
,” in
Environmental Fluid Mechanics
(
Butterworth-Heinemann
,
2018
).
85.
B.
Ahlborn
,
M. L.
Seto
, and
B. R.
Noack
, “
On drag, Strouhal number and vortex-street structure
,”
Fluid Dyn. Res.
30
,
379
399
(
2002
).
86.
S.
Ryu
and
G.
Iaccarino
, “
Vortex-induced rotations of a rigid square cylinder at low Reynolds numbers
,”
J. Fluid Mech.
813
,
482
507
(
2017
).
87.
S.
Sen
,
S.
Mittal
, and
G.
Biswas
, “
Flow past a square cylinder at low Reynolds numbers
,”
Int. J. Numer. Methods Fluids
67
,
1160
1174
(
2011
).
88.
T.
Baracu
and
R.
Boşneagu
, “
Numerical analysis of the flow around a cylinder for the perspective of correlations of the drag coefficient of the ship’s hulls
,”
Sci. Bull. Nav. Acad.
22
,
256
267
(
2019
).
89.
M. A.
Cruchaga
,
C. M.
Muñoz
, and
D. J.
Celentano
, “
Simulation and experimental validation of the motion of immersed rigid bodies in viscous flows
,”
Comput. Methods Appl. Mech. Eng.
197
,
2823
2835
(
2008
).
90.
C.
Bost
, “
Méthodes level-set et pénalisation pour le calcul d’interactions fluide-structure
,” in
Modélisation et Simulation
(
Université Joseph-Fourier-Grenoble I
,
2008
).
91.
C.
Bost
,
G.-H.
Cottet
, and
E.
Maître
, “
Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid
,”
SIAM J. Numer. Anal.
48
(
4
),
1313
1337
(
2010
).
You do not currently have access to this content.