Rogue wave events (RWEs), rare uncertainly emerging localized events with extreme amplitudes, widely exist in various nonlinear wave media. Past laboratory studies on RWEs of water surface waves have mainly focused on mechanically excited waves but to a lesser extent on waves solely excited by wind, which also have a large number of degrees of freedom. In this work, we experimentally demonstrate the laboratory observation of RWEs in a wind-driven water surface wave system after the transition to the steady wave turbulent state by increasing averaged wind speed. The spatiotemporal water surface height evolution is measured using diffusive light photography. It is found that RWEs uncertainly emerge in traveling bursts with high frequency large-amplitude fluctuations and irregular burst amplitude. The associated spontaneous slow periodic wave is identified as the resonant slow sloshing wave selected by the water tank with a finite length and spontaneously excited under turbulence. The surface wind speed modulation by the oscillating surface height of the sloshing wave in the small fetch region is proposed as the source for the excitations of sequential large amplitude bursts. The burst envelope shape deterioration through further turbulent wind and water wave interactions as bursts propagate downstream causes the non-Gaussian water surface height histogram with a highly stretched tail, contributed by the uncertain generation of RWEs in irregular bursts in the middle fetch region.

1.
J. M.
Dudley
,
G.
Genty
,
A.
Mussot
,
A.
Chabchoub
, and
F.
Dias
, “
Rogue waves and analogies in optics and oceanography
,”
Nat. Rev. Phys.
1
,
675
689
(
2019
).
2.
A. N.
Ganshin
,
V. B.
Efimov
,
G. V.
Kolmakov
,
L. P.
Mezhov-Deglin
, and
P. V. E.
McClintock
, “
Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium
,”
Phys. Rev. Lett.
101
,
065303
(
2008
).
3.
D. R.
Solli
,
C.
Ropers
,
P.
Koonath
, and
B.
Jalali
, “
Optical rogue waves
,”
Nature
450
,
1054
1057
(
2007
).
4.
A.
Montina
,
U.
Bortolozzo
,
S.
Residori
, and
F. T.
Arecchi
, “
Non-Gaussian statistics and extreme waves in a nonlinear optical cavity
,”
Phys. Rev. Lett.
103
,
173901
(
2009
).
5.
Y.-Y.
Tsai
,
J.-Y.
Tsai
, and
L.
I
, “
Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms
,”
Nat. Phys.
12
,
573
577
(
2016
).
6.
P. C.
Lin
and
L.
I
, “
Synchronization of multiscale waveform focusing for rogue wave generation in dust acoustic wave turbulence
,”
Phys. Rev. Res.
2
,
023090
(
2020
).
7.
C.
Kharif
,
E.
Pelinovsky
, and
A.
Slunyaev
,
Rogue Waves in the Ocean
(
Springer
,
2009
), Chap. 1.
8.
A.
Chabchoub
,
N. P.
Hoffmann
, and
N.
Akhmediev
, “
Rogue wave observation in a water wave tank
,”
Phys. Rev. Lett.
106
,
204502
(
2011
).
9.
M.
Onorato
,
A. R.
Osborne
,
M.
Serio
, and
L.
Cavaleri
, “
Modulational instability and non-Gaussian statistics in experimental random water-wave trains
,”
Phys. Fluids
17
,
078101
(
2005
).
10.
M.
Shats
,
H.
Punzmann
, and
H.
Xia
, “
Capillary rogue waves
,”
Phys. Rev. Lett.
104
,
104503
(
2010
).
11.
M.
Onorato
,
A. R.
Osborne
, and
M.
Serio
, “
Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves
,”
Phys. Rev. Lett.
96
,
014503
(
2006
).
12.
P. K.
Shukla
,
I.
Kourakis
,
B.
Eliasson
,
M.
Marklund
, and
L.
Stenflo
, “
Instability and evolution of nonlinearly interacting water waves
,”
Phys. Rev. Lett.
97
,
094501
(
2006
).
13.
R.
El Koussaifi
,
A.
Tikan
,
A.
Toffoli
,
S.
Randoux
,
P.
Suret
, and
M.
Onorato
, “
Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics
,”
Phys. Rev. E
97
,
012208
(
2018
).
14.
M.
Onorato
,
L.
Cavaleri
,
S.
Fouques
,
O.
Gramstad
,
P. A. E. M.
Janssen
,
J.
Monbaliu
,
A. R.
Osborne
,
C.
Pakozdi
,
M.
Serio
,
C. T.
Stansberg
etal., “
Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a three-dimensional wave basin
,”
J. Fluid Mech.
627
,
235
257
(
2009
).
15.
M.
Toffoli
,
T.
Waseda
,
A.
Toffoli
,
L.
Cavaleri
,
O.
Gramstad
,
P. A. E. M.
Janssen
,
T.
Kinoshita
,
J.
Monbaliu
,
N.
Mori
,
A. R.
Osborne
,
M.
Serio
,
C. T.
Stansberg
,
H.
Tamura
, and
K.
Trulsen
, “
Statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events
,”
Phys. Rev. Lett.
102
,
114502
(
2009
).
16.
T.
Waseda
,
T.
Kinoshita
, and
H.
Tamura
, “
Evolution of a random directional wave and freak wave occurrence
,”
J. Phys. Oceanogr.
39
,
621
639
(
2009
).
17.
A.
Toffoli
,
O.
Gramstad
,
K.
Trulsen
,
J.
Monbaliu
,
E.
Bitner-Gregersen
, and
M.
Onorato
, “
Evolution of weakly nonlinear random directional waves: Laboratory experiments and numerical simulations
,”
J. Fluid Mech.
664
,
313
336
(
2010
).
18.
W.
Xiao
,
Y.
Liu
,
G.
Wu
, and
D. K. P.
Yue
, “
Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution
,”
J. Fluid Mech.
720
,
357
392
(
2013
).
19.
C.
Kharif
and
E.
Pelinovsky
, “
Physical mechanisms of the rogue wave phenomenon
,”
Eur. J. Mech.: B/Fluids
22
,
603
634
(
2003
).
20.
A. N.
Pisarchik
,
R.
Jaimes-Reátegui
,
R.
Sevilla-Escoboza
,
G.
Huerta-Cuellar
, and
M.
Taki
, “
Rogue waves in a multistable system
,”
Phys. Rev. Lett.
107
,
274101
(
2011
).
21.
U.
Kanoglu
,
V. V.
Titov
,
B.
Aydin
,
C.
Moore
,
T. S.
Stefanakis
,
H.
Zhou
,
M.
Spillane
, and
C. E.
Synolakis
, “
Focusing of long waves with finite crest over constant depth
,”
Proc. R. Soc. A
469
,
20130015
(
2013
).
22.
H. Y.
Chen
,
C. Y.
Liu
, and
L.
I
, “
Identifying Faraday rogue wave precursors from surrounding waveform information
,”
Phys. Rev. Fluids
3
,
064401
(
2018
).
23.
N.
Akhmediev
and
E.
Pelinovsky
, “
Editorial—Introductory remarks on ‘discussion & debate: Rogue waves—Towards a unifying concept?’
,”
Eur. Phys. J.
185
,
1
4
(
2010
).
24.
H.
Xia
,
T.
Maimbourg
,
H.
Punzmann
, and
M.
Shats
, “
Oscillon dynamics and rogue wave generation in Faraday surface ripples
,”
Phys. Rev. Lett.
109
,
114502
(
2012
).
25.
A.
Toffoli
,
T.
Waseda
,
H.
Houtani
,
T.
Kinoshita
,
K.
Collins
,
D.
Proment
, and
M.
Onorato
, “
Excitation of rogue waves in a variable medium: An experimental study on the interaction of water waves and currents
,”
Phys. Rev. E
87
,
051201(R)
(
2013
).
26.
A.
Slunyaev
,
M.
Klein
, and
G. F.
Clauss
, “
Laboratory and numerical study of intense envelope solitons of water waves: Generation, reflection from a wall, and collisions
,”
Phys. Fluids
29
,
047103
(
2017
).
27.
S.
Stole-Hentschel
,
K.
Trulsen
,
L. B.
Rye
, and
A.
Raustol
, “
Extreme wave statistics of counter-propagating, irregular, long-crested sea states
,”
Phys. Fluids
30
,
067102
(
2018
).
28.
A.
Wang
,
A.
Ludu
,
Z.
Zong
,
L.
Zou
, and
Y.
Pei
, “
Experimental study of breathers and rogue waves generated by random waves over non-uniform bathymetry
,”
Phys. Fluids
32
,
087109
(
2020
).
29.
H. L.
Helmholtz
, “
XLIII. On discontinuous movements of fluids
,”
Philos. Mag.
36
,
337
346
(
1868
).
30.
T. E.
Faber
,
Fluid Dynamics for Physicists
, 1st ed. (
Cambridge University Press
,
Cambridge
,
1995
), Chaps. 1, 5, 7, and 8.
31.
J.
Hoepffner
,
R.
Blumenthal
, and
S.
Zaleski
, “
Self-similar wave produced by local perturbation of the Kelvin-Helmholtz shear-layer instability
,”
Phys. Rev. Lett.
106
,
104502
(
2011
).
32.
O. M.
Phillips
, “
On the generation of waves by turbulent wind
,”
J. Fluid Mech.
2
,
417
445
(
1957
).
33.
I. R.
Young
,
Wind Generated Ocean Waves
, 1st ed. (
Elsevier
,
1999
), Chaps. 4 and 5.
34.
J. P.
Matas
,
S.
Marty
,
M. S.
Dem
, and
A.
Cartellier
, “
Influence of gas turbulence on the instability of an air-water mixing layer
,”
Phys. Rev. Lett.
115
,
074501
(
2015
).
35.
S.
Perrard
,
A.
Lozano-Durán
,
M.
Rabaud
,
M.
Benzaquen
, and
F.
Moisy
, “
Turbulent windprint on a liquid surface
,”
J. Fluid Mech.
873
,
1020
1054
(
2019
).
36.
J. W.
Miles
, “
On the generation of surface waves by shear flows
,”
J. Fluid Mech.
3
,
185
204
(
1957
).
37.
P. B.
Marc
and
F.
Veron
, “
Structure of the airflow above surface waves
,”
J. Phys. Oceanogr.
46
,
1377
1397
(
2016
).
38.
M.
Aulnette
,
M.
Rabaud
, and
F.
Moisy
, “
Wind-sustained viscous solitons
,”
Phys. Rev. Fluids
4
,
084003
(
2019
).
39.
F.
Collard
and
G.
Caulliez
, “
Oscillating crescent-shaped water wave patterns
,”
Phys. Fluids
11
,
3195
3197
(
1999
).
40.
A.
Chabchoub
,
N.
Hoffmann
,
H.
Branger
,
C.
Kharif
, and
N.
Akhmediev
, “
Experiments on wind-perturbed rogue wave hydrodynamics using the peregrine breather model
,”
Phys. Fluids
25
,
101704
(
2013
).
41.
N. J. M.
Laxague
,
M.
Curcic
,
J.-V.
Björkqvist
, and
B. K.
Haus
, “
Gravity-capillary wave spectral modulation by gravity waves
,”
IEEE Trans. Geosci. Remote Sens.
55
,
2477
2485
(
2017
).
42.
N.
Takagaki
,
S.
Komori
,
K.
Iwano
,
N.
Suzuki
, and
H.
Kumamaru
, “
Generation method of wind waves under long-fetch conditions over a broad range of wind speeds
,”
Procedia IUTAM
26
,
184
193
(
2018
), part of special issue on iUTAM Symposium on Wind Waves.
43.
W. Y.
Zhang
,
W. X.
Huang
, and
C. X.
Xu
, “
Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries
,”
Phys. Rev. Fluids
4
,
054601
(
2019
).
44.
C.
Jiang
,
Y.
Yang
, and
B.
Deng
, “
Study on the nearshore evolution of regular waves under steady wind
,”
Water
12
,
686
(
2020
).
45.
D.
Eeltink
,
A.
Lemoine
,
H.
Branger
,
O.
Kimmoun
,
C.
Kharif
,
J. D.
Carter
,
A.
Chabchoub
,
M.
Brunetti
, and
J.
Kasparian
, “
Spectral up- and downshifting of Akhmediev breathers under wind forcing
,”
Phys. Fluids
29
,
107103
(
2017
).
46.
G.
Caulliez
and
C. A.
Guérin
, “
Higher-order statistical analysis of short wind wave fields
,”
J. Geophys. Res.: Oceans
117
,
C06002
, (
2012
).
47.
A.
Zavadsky
and
L.
Shemer
, “
Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge
,”
Phys. Fluids
29
,
056602
(
2017
).
48.
A.
Toffoli
,
D.
Proment
,
H.
Salman
,
J.
Monbaliu
,
F.
Frascoli
,
M.
Dafilis
,
E.
Stramignoni
,
R.
Forza
,
M.
Manfrin
, and
M.
Onorato
, “
Wind generated rogue waves in an annular wave flume
,”
Phys. Rev. Lett.
118
,
144503
(
2017
).
49.
A.
Zavadsky
,
D.
Liberzon
, and
L.
Shemer
, “
Statistical analysis of the spatial evolution of the stationary wind wave field
,”
J. Phys. Oceanogr.
43
,
65
79
(
2013
).
50.
W. B.
Wright
,
R.
Budakian
, and
S. J.
Putterman
, “
Diffusing light photography of fully developed isotropic ripple turbulence
,”
Phys. Rev. Lett.
76
,
4528
4531
(
1996
).
51.
A.
Paquier
,
F.
Moisy
, and
M.
Rabaud
, “
Surface deformations and wave generation by wind blowing over a viscous liquid
,”
Phys. Fluids
27
,
122103
(
2015
).
52.
R. A.
Ibrahim
,
Liquid Sloshing Dynamics
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2005
), Chaps. 1 and 2.
53.
F.
Ardhuin
,
B.
Chapron
, and
F.
Collard
, “
Observation of swell dissipation across oceans
,”
Geophys. Res. Lett.
36
,
L06607
, (
2009
).
54.
J. H.
Jung
,
H. S.
Yoon
, and
C. Y.
Lee
, “
Effect of natural frequency modes on sloshing phenomenon in a rectangular tank
,”
Int. J. Naval Archit. Ocean Eng.
7
,
580
594
(
2015
).
55.
A.
VakilaadSarabi
and
M.
Miyajima
, “
Study of the sloshing of water reservoirs and tanks due to long period and long duration seismic motions
,” (
2012
); available at https://www.semanticscholar.org/paper/Study-of-the-Sloshing-of-Water-Reservoirs-and-Tanks-VakilaadSarabi-Miyajima/282bd9e81d51a3e78193f8d6809c96307d3aa23c.
56.
J. B.
Frandsen
, “
Sloshing motions in excited tanks
,”
J. Comput. Phys.
196
,
53
87
(
2004
).
57.
H.
Gang
,
T.
Ditzinger
,
C. Z.
Ning
, and
H.
Haken
, “
Stochastic resonance without external periodic force
,”
Phys. Rev. Lett.
71
,
807
810
(
1993
).
58.
L.
I
and
J. M.
Liu
, “
Experimental observation of stochastic resonance like behavior of autonomous motion in weakly ionized RF magnetoplasmas
,”
Phys. Rev. Lett.
74
,
3161
3164
(
1995
).
59.
G. H.
Keulegan
, “
Wind tides in small closed channels
,”
J. Res. Natl. Bur. Stand.
46
,
358
(
1951
).
60.
A.
Paquier
, “
Generation and growth of wind waves over a viscous liquid
,” Ph.D. Thesis (
Université Paris-Saclay
,
2016
); available at https://tel.archives-ouvertes.fr/tel-01354993v2.
You do not currently have access to this content.