The control of microdroplet impact on superhydrophobic surfaces (SHSs) is becoming imperative owing to its effect on several industrial applications, such as corrosion protection, self-cleaning, ice resisting, and de-icing. While most of the experimental studies on the impact dynamics of droplets are based on macrodroplets, it is unclear how the obtained results can be applied to microdroplet impact on SHSs. In this work, a comprehensive experimental analysis ranging from millimeter- to micrometer-sized droplets using a novel drop on demand microdispensing system is performed. Several SHSs were synthesized to control droplet impact by enforcing bouncing on the surface during the impingement process. The current analysis focuses on experimentally capturing and analyzing the impact behavior of cloud-sized microdroplets and macrodroplets (D0 = 10 μm–2500 μm) upon SHS impact, with hysteresis, under controlled environmental conditions. Different droplet impact parameters, such as droplet contact time, maximum spreading diameter, and restitution coefficient, were experimentally obtained. Interestingly, this investigation highlighted a contrast in the behavior of microdroplets and macrodroplets upon impact on rough SHSs. It was found that critical parameters controlling droplet dynamics, such as the maximum spreading diameter and coefficient of restitution, cannot be described by current models in the literature. A preliminary theoretical model based on energy balance and accounting for the substrate hysteresis is proposed to explain some of these findings. Finally, the effect of SHS roughness on the bouncing of cloud-sized microdroplets (D0 = 10 μm–100 μm) was examined in the context of synthesizing SHSs.

1.
A.
Worthington
,
The Splash of a Drop
(
Society for promoting Christian knowledge
,
London
,
1895
).
2.
A.
Worthington
,
A Study of Splashes
(
The Royal Naval Engineering College
,
Davenport
,
1908
).
3.
R
Danzebrink
and
M. A.
Aegerter
, “
Deposition of micropatterned coating using an ink-jet technique
,”
Thin Solid Films
351
(
1-2
),
115
118
(
1999
).
4.
J.
Stringer
and
B.
Derby
, “
Limits to feature size and resolution in ink jet printing
,”
J. Eur. Ceram. Soc.
29
,
913
918
(
2009
); part of Special Issue: Referred Papers Presented at 3rd International Conference on Shaping of Advanced Ceramics (Shaping 3).
5.
D.
Soltman
and
V.
Subramanian
, “
Inkjet-printed line morphologies and temperature control of the coffee ring effect
,”
Langmuir
24
,
2224
2231
(
2008
).
6.
R.
Dhiman
and
S.
Chandra
, “
Freezing-induced splashing during impact of molten metal droplets with high Weber numbers
,”
Int. J. Heat Mass Transfer
48
,
5625
5638
(
2005
).
7.
S.
Shakeri
and
S.
Chandra
, “
Splashing of molten tin droplets on a rough steel surface
,”
Int. J. Heat Mass Transfer
45
,
4561
4575
(
2002
).
8.
D.
Kalantari
and
C.
Tropea
, “
Spray impact onto flat and rigid walls: Empirical characterization and modelling
,”
Int. J. Multiphase Flow
33
,
525
544
(
2007
).
9.
D.
Sivakumar
and
H.
Nishiyama
, “
Spreading and solidification of a molten metal droplet impinging on a heated surface
,”
Int. J. Heat Mass Transfer
47
,
4469
4478
(
2004
).
10.
S. D.
Aziz
and
S.
Chandra
, “
Impact, recoil and splashing of molten metal droplets
,”
Int. J. Heat Mass Transfer
43
,
2841
2857
(
2000
).
11.
L.
Mishchenko
,
B.
Hatton
,
V.
Bahadur
,
J. A.
Taylor
,
T.
Krupenkin
, and
J.
Aizenberg
, “
Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
,”
ACS Nano
4
,
7699
7707
(
2010
).
12.
S. K.
Thomas
,
R. P.
Cassoni
, and
C. D.
MacArthur
, “
Aircraft anti-icing and de-icing techniques and modeling
,”
J. Aircraft
33
,
841
854
(
1996
).
13.
G.
Fortin
and
J.
Perron
, “
Wind turbine icing and de-icing
,” in
47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2009
).
14.
A.
Turhan
,
S.
Kim
,
M.
Hatzell
, and
M. M.
Mench
, “
Impact of channel wall hydrophobicity on through-plane water distribution and flooding behavior in a polymer electrolyte fuel cell
,”
Electrochim. Acta
55
,
2734
2745
(
2010
).
15.
J. G.
Carton
,
V.
Lawlor
,
A. G.
Olabi
,
C.
Hochenauer
, and
G.
Zauner
, “
Water droplet accumulation and motion in PEM (proton exchange membrane) fuel cell mini-channels
,”
Energy
39
,
63
73
(
2012
).
16.
A.
Theodorakakos
,
T.
Ous
,
M.
Gavaises
,
J. M.
Nouri
,
N.
Nikolopoulos
, and
H.
Yanagihara
, “
Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells
,”
J. Colloid Interface Sci.
300
,
673
687
(
2006
).
17.
A. L. N.
Moreira
,
A. S.
Moita
, and
M. R.
Panão
, “
Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?
,”
Progress in Energy and Combustion Science
36
(
5
),
554
580
(
2010
).
18.
R.
Li
,
N.
Ashgriz
,
S.
Chandra
,
J. R.
Andrews
, and
S.
Drappel
, “
Coalescence of two droplets impacting a solid surface
,”
Exp. Fluids
48
,
1025
1035
(
2010
).
19.
R.
Li
,
N.
Ashgriz
,
S.
Chandra
,
J. R.
Andrews
, and
J.
Williams
, “
Drawback during deposition of overlapping molten wax droplets
,”
J. Manuf. Sci. Eng.
130
,
041011
(
2008
).
20.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Time evolution of liquid drop impact onto solid, dry surfaces
,”
Exp. Fluids
33
,
112
124
(
2002
).
21.
J. B.
Lee
,
N.
Laan
,
K. G.
De Bruin
,
G.
Skantzaris
,
N.
Shahidzadeh
,
D.
Derome
,
J.
Carmeliet
, and
D.
Bonn
, “
Universal rescaling of drop impact on smooth and rough surfaces
,”
J. Fluid Mech.
786
,
R41
R411
(
2016
).
22.
M.
Tembely
,
R.
Attarzadeh
, and
A.
Dolatabadi
, “
On the numerical modeling of supercooled micro-droplet impact and freezing on superhydrophobic surfaces
,”
Int. J. Heat Mass Transfer
127
,
193
202
(
2018
).
23.
H.
Shetabivash
and
A.
Dolatabadi
, “
Numerical investigation of air mediated droplet bouncing on flat surfaces
,”
AIP Adv.
7
,
095003
(
2017
).
24.
J.
De Ruiter
,
R.
Lagraauw
,
D.
Van Den Ende
, and
F.
Mugele
, “
Wettability-independent bouncing on flat surfaces mediated by thin air films
,”
Nat. Phys.
11
,
48
53
(
2015
).
25.
A. G.
Marín
,
O. R.
Enríquez
,
P.
Brunet
,
P.
Colinet
, and
J. H.
Snoeijer
, “
Universality of tip singularity formation in freezing water drops
,”
Phys. Rev. Lett.
113
,
054301
(
2014
).
26.
D.
Zang
,
S.
Tarafdar
,
Y. Y.
Tarasevich
,
M.
Dutta Choudhury
, and
T.
Dutta
, “
Evaporation of a droplet: From physics to applications
,”
Phys. Rep.
804
,
1
56
(
2019
).
27.
M.
Tembely
and
A.
Dolatabadi
, “
A comprehensive model for predicting droplet freezing features on a cold substrate
,”
J. Fluid Mech.
859
,
566
585
(
2019
).
28.
R.
Attarzadeh
and
A.
Dolatabadi
, “
Icephobic performance of superhydrophobic coatings: A numerical analysis
,”
Int. J. Heat Mass Transfer
136
,
1327
1337
(
2019
).
29.
J. L.
Laforte
,
M. A.
Allaire
, and
J.
Laflamme
, “
State-of-the-art on power line de-icing
,”
Atmos. Res.
46
,
143
158
(
1998
).
30.
C. C.
Ryerson
, “
Ice protection of offshore platforms
,”
Cold Reg. Sci. Technol.
65
,
97
110
(
2011
).
31.
M.
Farzaneh
and
C. C.
Ryerson
, “
Anti-icing and deicing techniques
,”
Cold Reg. Sci. Technol.
65
,
1
4
(
2011
).
32.
O.
Parent
and
A.
Ilinca
, “
Anti-icing and de-icing techniques for wind turbines: Critical review
,”
Cold Reg. Sci. Technol.
65
,
88
96
(
2011
).
33.
N.
Dalili
,
A.
Edrisy
, and
R.
Carriveau
, “
A review of surface engineering issues critical to wind turbine performance
,”
Renewable and Sustainable Energy Reviews
13
(
2
),
428
438
(
2009
).
34.
N.
Czernkovich
, “
Understanding in-flight icing
,”
In: Transport Canada Aviation Safety Seminar
, pp.
1-21
(
2004
).
35.
A.
Alizadeh
,
M.
Yamada
,
R.
Li
,
W.
Shang
,
S.
Otta
,
S.
Zhong
,
L.
Ge
,
A.
Dhinojwala
,
K. R.
Conway
,
V.
Bahadur
,
A. J.
Vinciquerra
,
B.
Stephens
, and
M. L.
Blohm
, “
Dynamics of ice nucleation on water repellent surfaces
,”
Langmuir
28
,
3180
3186
(
2012
).
36.
M. B.
Lesser
and
J. E.
Field
, “
The impact of compressible liquids
,”
Annu. Rev. Fluid Mech.
15
,
97
122
(
1983
).
37.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
93
(
1993
).
38.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
39.
D. B.
van Dam
and
C.
Le Clerc
, “
Experimental study of the impact of an ink-jet printed droplet on a solid substrate
,”
Phys. Fluids
16
,
3403
3414
(
2004
).
40.
H.
Dong
,
W. W.
Carr
,
D. G.
Bucknall
, and
J. F.
Morris
, “
Temporally-resolved inkjet drop impaction on surfaces
,”
AIChE J.
53
,
2606
2617
(
2007
).
41.
J.
Genzer
and
K.
Efimenko
, “
Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review
,”
Biofouling
22
(
5
),
339
360
(
2006
).
42.
K.
Koch
and
W.
Barthlott
, “
Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials
,”
Philos. Trans. R. Soc., A
367
,
1487
1509
(
2009
).
43.
J. A.
Nychka
and
M. M.
Gentleman
, “
Implications of wettability in biological materials science
,”
JOM
62
(
7
),
39
48
(
2010
).
44.
X.
Zhang
,
F.
Shi
,
J.
Niu
,
Y.
Jiang
, and
Z.
Wang
, “
Superhydrophobic surfaces: From structural control to functional application
,”
J. Mater. Chem.
18
,
621
633
(
2008
).
45.
J. B.
Lee
,
H. R.
Gwon
,
S. H.
Lee
, and
M.
Cho
, “
Wetting transition characteristics on microstructured hydrophobic surfaces
,”
Mater. Trans.
51
,
1709
1711
(
2010
).
46.
Y. C.
Jung
and
B.
Bhushan
, “
Wetting transition of water droplets on superhydrophobic patterned surfaces
,”
Scr. Mater.
57
,
1057
1060
(
2007
).
47.
P.
Tsai
,
R. G. H.
Lammertink
,
M.
Wessling
, and
D.
Lohse
, “
Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures
,”
Phys. Rev. Lett.
104
,
116102
(
2010
).
48.
N. A.
Patankar
, “
Transition between superhydrophobic states on rough surfaces
,”
Langmuir
20
,
7097
7102
(
2004
).
49.
E.
Bormashenko
, “
A variational approach to wetting of composite surfaces: Is wetting of composite surfaces a one-dimensional or two-dimensional phenomenon?
,”
Langmuir
25
,
10451
10454
(
2009
).
50.
C.
Antonini
,
M.
Innocenti
,
T.
Horn
,
M.
Marengo
, and
A.
Amirfazli
, “
Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems
,”
Cold Reg. Sci. Technol.
67
,
58
67
(
2011
).
51.
D.
Li
and
Z.
Chen
, “
Experimental study on instantaneously shedding frozen water droplets from cold vertical surface by ultrasonic vibration
,”
Exp. Therm. Fluid Sci.
53
,
17
25
(
2014
).
52.
L.
Yin
,
Q.
Xia
,
J.
Xue
,
S.
Yang
,
Q.
Wang
, and
Q.
Chen
, “
In situ investigation of ice formation on surfaces with representative wettability
,”
Appl. Surf. Sci.
256
,
6764
6769
(
2010
).
53.
S.
Farhadi
,
M.
Farzaneh
, and
S. A.
Kulinich
, “
Anti-icing performance of superhydrophobic surfaces
,”
Appl. Surf. Sci.
257
,
6264
6269
(
2011
).
54.
F.
Wang
,
C.
Li
,
Y.
Lv
,
F.
Lv
, and
Y.
Du
, “
Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions
,”
Cold Reg. Sci. Technol.
62
,
29
33
(
2010
).
55.
S.
Chandra
and
C. T.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London, Ser. A
432
,
13
41
(
1991
).
56.
D.
Richard
and
D.
Quéré
, “
Bouncing water drops
,”
Europhys. Lett.
50
,
769
775
(
2000
).
57.
Š.
Šikalo
,
H. D.
Wilhelm
,
I. V.
Roisman
,
S.
Jakirlić
, and
C.
Tropea
, “
Dynamic contact angle of spreading droplets: Experiments and simulations
,”
Phys. Fluids
17
,
062103
(
2005
).
58.
J. B.
Lee
,
D.
Derome
,
A.
Dolatabadi
, and
J.
Carmeliet
, “
Energy budget of liquid drop impact at maximum spreading: Numerical simulations and experiments
,”
Langmuir
32
,
1279
1288
(
2016
).
59.
J.
Eggers
,
M. A.
Fontelos
,
C.
Josserand
, and
S.
Zaleski
, “
Drop dynamics after impact on a solid wall: Theory and simulations
,”
Phys. Fluids
22
,
062101
(
2010
).
60.
F.
Yeganehdoust
,
R.
Attarzadeh
,
I.
Karimfazli
, and
A.
Dolatabadi
, “
A numerical analysis of air entrapment during droplet impact on an immiscible liquid film
,”
Int. J. Multiphase Flow
124
,
103175
(
2020
).
61.
M.
Pasandideh-Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
659
(
1996
).
62.
A.
Asai
,
M.
Shioya
,
S.
Hirasawa
, and
T.
Okazaki
, “
Impact of an ink drop on paper
,”
J. Imaging Sci.
37
,
205
207
(
1993
).
63.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
64.
P.
Tsai
,
M. H. W.
Hendrix
,
R. R. M.
Dijkstra
,
L.
Shui
, and
D.
Lohse
, “
Microscopic structure influencing macroscopic splash at high Weber number
,”
Soft Matter
7
,
11325
11333
(
2011
).
65.
L.
Chen
,
Z.
Xiao
,
P. C. H.
Chan
,
Y.-K.
Lee
, and
Z.
Li
, “
A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf
,”
Appl. Surf. Sci.
257
,
8857
8863
(
2011
).
66.
C.
Tang
,
M.
Qin
,
X.
Weng
,
X.
Zhang
,
P.
Zhang
,
J.
Li
, and
Z.
Huang
, “
Dynamics of droplet impact on solid surface with different roughness
,”
Int. J. Multiphase Flow
96
,
56
69
(
2017
).
67.
N.
Laan
,
K. G.
De Bruin
,
D.
Bartolo
,
C.
Josserand
, and
D.
Bonn
, “
Maximum diameter of impacting liquid droplets
,”
Phys. Rev. Appl.
2
,
044018
(
2014
).
68.
M. A. Q.
Santiago
,
J. R.
Castrejón
,
P.
Alfonso
, and
A. C.
Pita
, “
On the analysis of the contact angle for impacting droplets using a polynomial fitting approach
,”
Exp. Fluids
61
,
143
(
2020
).
69.
B.
Zhao
,
X.
Wang
,
K.
Zhang
,
L.
Chen
, and
X.
Deng
, “
Impact of viscous droplets on superamphiphobic surfaces
,”
Langmuir
33
,
144
151
(
2017
).
70.
C. W.
Visser
,
P. E.
Frommhold
,
S.
Wildeman
,
R.
Mettin
,
D.
Lohse
, and
C.
Sun
, “
Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns
,”
Soft Matter
11
,
1708
1722
(
2015
).
71.
R.
Attarzadeh
and
A.
Dolatabadi
, “
Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces
,”
Phys. Fluids
29
,
012104
(
2017
).
72.
A. F.
Stalder
,
T.
Melchior
,
M.
Müller
,
D.
Sage
,
T.
Blu
, and
M.
Unser
, “
Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops
,”
Colloids Surf., A
364
,
72
81
(
2010
).
73.
A. F.
Stalder
,
G.
Kulik
,
D.
Sage
,
L.
Barbieri
, and
P.
Hoffmann
, “
A snake-based approach to accurate determination of both contact points and contact angles
,”
Colloids Surf., A
286
,
92
103
(
2006
).
74.
K.
Smyth
,
A.
Paxon
,
H. M.
Kwon
,
T.
Deng
, and
K. K.
Varanasi
, “
Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis
,” in
2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
2010
.
75.
M. M.
Farhangi
,
P. J.
Graham
,
N. R.
Choudhury
, and
A.
Dolatabadi
, “
Induced detachment of coalescing droplets on superhydrophobic surfaces
,”
Langmuir
28
,
1290
1303
(
2012
).
76.
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Contact time of a bouncing drop
,”
Nature
417
,
811
(
2002
).
77.
P.
Olin
,
S. B.
Lindström
,
T.
Pettersson
, and
L.
Wågberg
, “
Water drop friction on superhydrophobic surfaces
,”
Langmuir
29
,
9079
9089
(
2013
).
78.
C.
Antonini
,
F.
Villa
,
I.
Bernagozzi
,
A.
Amirfazli
, and
M.
Marengo
, “
Drop rebound after impact: The role of the receding contact angle
,”
Langmuir
29
,
16045
16050
(
2013
).
You do not currently have access to this content.