The mechanical robustness of droplets is a crucial factor for many applications. In the present work, we reported that adding a small and certain number of hydrophilic nanoparticles can significantly enhance the mechanical robustness of water droplets. Among the various hydrophilic nanoparticles investigated, SiO2 was found to be the most effective one. Experiments and molecular dynamics simulations were used to understand the physics of the phenomenon. It turned out that the microscopic structure at the solid–liquid interface becomes more ordered compared to the pure liquid droplet due to the interaction between nanoparticles and liquid molecules. This ordered structure can strengthen the solvent-mediated forces between nanoparticles, which, in turn, enhances the solid-like performance of the liquid surface and thus the robustness of the droplet.

1.
A. A.
Mohamad
, “
Myth about nano-fluid heat transfer enhancement
,”
Int. J. Heat Mass Transfer
86
,
397
(
2015
).
2.
E. T.
Ulset
,
P.
Kosinski
,
Y.
Zabednova
,
O. V.
Zhdaneev
,
P. G.
Struchalin
, and
B. V.
Balakin
, “
Photothermal boiling in aqueous nanofluids
,”
Nano Energy
50
,
339
(
2018
).
3.
J.
Zeng
and
Y.
Xuan
, “
Tunable full-spectrum photo-thermal conversion features of magnetic-plasmonic Fe3O4/TiN nanofluid
,”
Nano Energy
51
,
754
(
2018
).
4.
A.
Karimi
,
Z.
Fakhroueian
,
A.
Bahramian
,
N.
Pour Khiabani
,
J. B.
Darabad
,
R.
Azin
, and
S.
Arya
, “
Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications
,”
Energy Fuels
26
,
1028
(
2012
).
5.
D.
Tripathi
and
O. A.
Bég
, “
A study on peristaltic flow of nanofluids: Application in drug delivery systems
,”
Int. J. Heat Mass Transfer
70
,
61
(
2014
).
6.
L.
Zhang
,
Y.
Ding
,
M.
Povey
, and
D.
York
, “
ZnO nanofluids—A potential antibacterial agent
,”
Prog. Nat. Sci.
18
,
939
(
2008
).
7.
C.
Ziming
,
W.
Fuqiang
,
X.
Yinmo
,
M.
Lanxin
,
X.
Huijin
,
T.
Jianyu
, and
B.
Fengwu
, “
Investigation of optical properties and radiative transfer of sea water-based nanofluids for photocatalysis with different salt concentrations
,”
Int. J. Hydrogen Energy
42
,
26626
(
2017
).
8.
O.
Mahian
,
A.
Kianifar
,
S. Z.
Heris
,
D.
Wen
,
A. Z.
Sahin
, and
S.
Wongwises
, “
Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger
,”
Nano Energy
36
,
134
(
2017
).
9.
J.
Navas
,
A.
Sánchez-Coronilla
,
E. I.
Martín
,
M.
Teruel
,
J. J.
Gallardo
,
T.
Aguilar
,
R.
Gómez-Villarejo
,
R.
Alcántara
,
C.
Fernández-Lorenzo
,
J. C.
Piñero
, and
J.
Martín-Calleja
, “
On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: An experimental and molecular dynamics study
,”
Nano Energy
27
,
213
(
2016
).
10.
J.
Xu
,
X.
Yan
,
G.
Liu
, and
J.
Xie
, “
The critical nanofluid concentration as the crossover between changed and unchanged solar-driven droplet evaporation rates
,”
Nano Energy
57
,
791
(
2019
).
11.
I.
Zakaria
,
W. H.
Azmi
,
W. A. N. W.
Mohamed
,
R.
Mamat
, and
G.
Najafi
, “
Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water—Ethylene glycol mixture for proton exchange membrane fuel cell application
,”
Int. Commun. Heat Mass Transfer
61
,
61
(
2015
).
12.
S. U. S.
Choi
and
J. A.
Eastman
, “
Enhancing thermal conductivity of fluids with nanoparticles
,” in 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA,
12-17 November 1995
.
13.
M. H.
Ahmadi
,
A.
Mirlohi
,
M.
Alhuyi Nazari
, and
R.
Ghasempour
, “
A review of thermal conductivity of various nanofluids
,”
J. Mol. Liq.
265
,
181
(
2018
).
14.
J. H.
Lee
, “
A review of thermal conductivity models for nanofluids
,”
Heat Transfer Eng.
36
,
1085
(
2014
).
15.
L.
Wang
and
J.
Fan
, “
Nanofluids research: Key issues
,”
Nanoscale Res. Lett.
5
,
1241
(
2010
).
16.
M.
Chandrasekar
and
S.
Suresh
, “
A review on the mechanisms of heat transport in nanofluids
,”
Heat Transfer Eng.
30
,
1136
(
2009
).
17.
W.
Yu
,
D. M.
France
,
D.
Singh
,
E. V.
Timofeeva
,
D. S.
Smith
, and
J. L.
Routbort
, “
Mechanisms and models of effective thermal conductivities of nanofluids
,”
J. Nanosci. Nanotechnol.
10
,
4824
(
2010
).
18.
P. C.
Mukesh Kumar
,
J.
Kumar
, and
S.
Suresh
, “
Review on nanofluid theoretical viscosity models
,”
Int. J. Eng. Innovat. Res.
1
,
128
134
(
2012
).
19.
V. Y.
Rudyak
, “
Viscosity of nanofluids. Why it is not described by the classical theories
,”
Adv. Nanopart.
02
,
266
(
2013
).
20.
G.
Lu
,
Y.-Y.
Duan
, and
X.-D.
Wang
, “
Surface tension, viscosity, and rheology of water-based nanofluids: A microscopic interpretation on the molecular level
,”
J. Nanoparticle Res.
16
,
2564
(
2014
).
21.
K.
Xu
,
P.
Zhu
,
T.
Colon
,
C.
Huh
, and
M.
Balhoff
, “
A microfluidic investigation of the synergistic effect of nanoparticles and surfactants in macro-emulsion-based enhanced oil recovery
,”
SPE J.
22
,
459
(
2017
).
22.
L.
Shui
,
A.
Van Den Berg
, and
J. C. T.
Eijkel
, “
Interfacial tension controlled W/O and O/W 2-phase flows in microchannel
,”
Lab Chip
9
,
795
(
2009
).
23.
Z.
Toprakcioglu
,
P. K.
Challa
,
A.
Levin
, and
T. P. J.
Knowles
, “
Observation of molecular self-assembly events in massively parallel microdroplet arrays
,”
Lab Chip
18
,
3303
(
2018
).
24.
K. D.
Nyberg
,
M. B.
Scott
,
S. L.
Bruce
,
A. B.
Gopinath
,
D.
Bikos
,
T. G.
Mason
,
J. W.
Kim
,
H. S.
Choi
, and
A. C.
Rowat
, “
The physical origins of transit time measurements for rapid, single cell mechanotyping
,”
Lab Chip
16
,
3330
(
2016
).
25.
K.
Reinheimer
,
M.
Grosso
, and
M.
Wilhelm
, “
Fourier transform rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions
,”
J. Colloid Interface Sci.
360
,
818
(
2011
).
26.
J. K.
Ferri
,
P.
Carl
,
N.
Gorevski
,
T. P.
Russell
,
Q.
Wang
,
A.
Böker
, and
A.
Fery
, “
Separating membrane and surface tension contributions in Pickering droplet deformation
,”
Soft Matter
4
,
2259
(
2008
).
27.
P.
Aussillous
and
D.
Quéré
, “
Properties of liquid marbles
,”
Proc. R. Soc. A
462
,
973
(
2006
).
28.
C.
Planchette
,
A. L.
Biance
, and
E.
Lorenceau
, “
Transition of liquid marble impacts onto solid surfaces
,”
Europhys. Lett.
97
,
14003
(
2012
).
29.
S.
Asare-Asher
,
J. N.
Connor
, and
R.
Sedev
, “
Elasticity of liquid marbles
,”
J. Colloid Interface Sci.
449
,
341
(
2015
).
30.
P. S.
Bhosale
,
M. V.
Panchagnula
, and
H. A.
Stretz
, “
Mechanically robust nanoparticle stabilized transparent liquid marbles
,”
Appl. Phys. Lett.
93
,
034109
(
2008
).
31.
P.
Attard
and
S. J.
Miklavcic
, “
Effective spring description of a bubble or a droplet interacting with a particle
,”
J. Colloid Interface Sci.
247
,
255
(
2002
).
32.
Z.
Liu
,
X.
Fu
,
B. P.
Binks
, and
H. C.
Shum
, “
Mechanical compression to characterize the robustness of liquid marbles
,”
Langmuir
31
,
11236
(
2015
).
33.
G.
McHale
and
M. I.
Newton
, “
Liquid marbles: Principles and applications
,”
Soft Matter
7
,
5473
(
2011
).
34.
S.
Wendt
,
Y. D.
Kim
, and
D. W.
Goodman
, “
Identification of defect sites on oxide surfaces by metastable impact electron spectroscopy
,”
Prog. Surf. Sci.
74
,
141
(
2003
).
35.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Elsevier
,
New York
,
2011
).
36.
V.
Mankad
and
P. K.
Jha
, “
First-principles study of water adsorption on α-SiO2 [110] surface
,”
AIP Adv.
6
,
085001
(
2016
).
37.
C.
Zou
,
J.
Fothergill
, and
S.
Rowe
, “
The effect of water absorption on the dielectric properties of epoxy nanocomposites
,”
IEEE Trans. Dielectr. Electr. Insul.
15
,
106
(
2008
).
38.
G.
Fazio
,
D.
Selli
,
L.
Ferraro
,
G.
Seifert
, and
C.
Di Valentin
, “
Curved TiO2 nanoparticles in water: Short (chemical) and long (physical) range interfacial effects
,”
ACS Appl. Mater. Interfaces
10
,
29943
(
2018
).
39.
V. N.
Koparde
and
P. T.
Cummings
, “
Molecular dynamics study of water adsorption on TiO2 nanoparticles
,”
J. Phys. Chem. C
111
,
6920
(
2007
).
40.
W.
Cui
,
Z.
Shen
,
J.
Yang
, and
S.
Wu
, “
Molecular dynamics simulation on the microstructure of absorption layer at the liquid-solid interface in nanofluids
,”
Int. Commun. Heat Mass Transfer
71
,
75
(
2016
).

Supplementary Material

You do not currently have access to this content.