In this work, we extend our previous research on swirl nozzles by introducing bubbles at the nozzle inlet. A large-scale hollow cone pressure-swirl atomizer is studied using scale-resolving simulations. The present flow conditions target a Reynolds number range of 600 ≤ Re ≤ 910 and gas-to-total volumetric flow rate ratios between 0.07 ≤ β ≤ 0.33 with β = 0 as an experimental and computational reference. The computational setup has relevance to high-viscosity bio-fuel injection processes. The flow rate ratio and bubble diameter sweeps are carried out to study their effect on the inner-nozzle flow and the liquid film characteristics outside the nozzle. The present flow system is shown to pose highly versatile physics, including bubble coalescence, bubble–vortex interaction, and faster liquid film destabilization relative to β = 0 case. The main results are as follows: (1) β is found to have a significant effect on the bimodal bubble volume probability density function inside the swirl chamber. In addition, the total resolved interfacial area of the near-orifice liquid film increases with β. (2) At the representative value of β = 0.2, the exact bubble size at the inlet is observed to have only a minor effect on the swirl chamber flow and liquid film characteristics. (3) The bubble-free (β = 0) and bubbly (β > 0) flows differ in terms of effective gas core diameter, core intermittency features, and spray uniformity. The quantitative analysis implies that bubble inclusion at the inlet affects the global liquid film characteristics with relevance to atomization.

1.
S. D.
Sovani
,
P. E.
Sojka
, and
A. H.
Lefebvre
, “
Effervescent atomization
,”
Prog. Energy Combust. Sci.
27
,
483
521
(
2001
).
2.
D.
Konstantinov
,
R.
Marsh
,
P. J.
Bowen
, and
A.
Crayford
, “
Effervescent atomization for industrial energy-technology review
,”
Atomization Sprays
20
,
525
552
(
2010
).
3.
M. P.
Järvinen
,
A. E. P.
Kankkunen
,
R.
Virtanen
,
P. H.
Miikkulainen
, and
V. P.
Heikkilä
, “
A one-dimensional two-phase flow model and experimental validation for a flashing viscous liquid in a splash plate nozzle
,”
Atomization Sprays
25
,
795
817
(
2015
).
4.
P.
Miikkulainen
,
A.
Kankkunen
,
M.
Järvinen
, and
C.-J.
Fogelholm
, “
The significance of velocity in black liquor spraying
,”
Tappi J.
8
,
36
40
(
2009
).
5.
A.
Lefebvre
and
V.
McDonell
,
Atomization and Sprays
, 2nd ed. (
CRC Press
,
Boca Raton
,
2017
).
6.
G. A.
Vijay
,
N. S. V.
Moorthi
, and
A.
Manivannan
, “
Internal and external flow characteristics of swirl atomizers: A review
,”
Atomization Sprays
25
,
153
188
(
2015
).
7.
Z.
Kang
,
Z.-g.
Wang
,
Q.
Li
, and
P.
Cheng
, “
Review on pressure swirl injector in liquid rocket engine
,”
Acta Astronaut.
145
,
174
198
(
2018
).
8.
M.
Ochowiak
,
L.
Broniarz-Press
, and
J.
Rozanski
, “
The discharge coefficient of effervescent atomizers
,”
Exp. Therm. Fluid Sci.
34
,
1316
1323
(
2010
).
9.
J.
Jedelsky
and
M.
Jicha
, “
Unsteadiness in effervescent sprays: A new evaluation method and the influence of operational conditions
,”
Atomization Sprays
18
,
49
83
(
2008
).
10.
X.
Huang
,
X.
Wang
, and
G.
Liao
, “
Visualization of two phase flow inside an effervescent atomizer
,”
J. Visualization
11
,
299
308
(
2008
).
11.
K.-C.
Lin
,
P.
Kennedy
, and
T.
Jackson
, “
Structures of internal flow and the corresponding spray for aerated-liquid injectors
,” in
37th Joint Propulsion Conference and Exhibit
(
AIAA
,
2001
), p.
3569
.
12.
D.
Sen
,
M. A.
Balzan
,
D. S.
Nobes
, and
B. A.
Fleck
, “
Bubble formation and flow instability in an effervescent atomizer
,”
J. Visualization
17
,
113
122
(
2014
).
13.
M.
Hong
,
B. A.
Fleck
, and
D. S.
Nobes
, “
Unsteadiness of the internal flow in an effervescent atomizer nozzle
,”
Exp. Fluids
55
,
1855
(
2014
).
14.
C.
Sun
,
Z.
Ning
,
X.
Qiao
,
M.
Lv
,
J.
Fu
,
J.
Zhao
, and
X.
Wang
, “
Numerical simulation of gas-liquid flow behavior in the nozzle exit region of an effervescent atomizer
,”
Int. J. Spray Combust. Dyn.
11
,
1756827718821592
(
2019
).
15.
C.
Sun
,
Z.
Ning
,
X.
Qiao
,
M.
Lv
,
Y.
Li
,
J.
Zhao
, and
X.
Wang
, “
Study on effervescent spray morphology based on internal gas-liquid two-phase flow patterns
,”
Eur. J. Mech. B: Fluids
74
,
123
138
(
2019
).
16.
M.
Mousavi
and
A.
Dolatabadi
, “
Numerical study of the effect of gas-to-liquid ratio on the internal and external flows of effervescent atomizers
,”
Trans. Can. Soc. Mech. Eng.
42
,
444
456
(
2018
).
17.
L.
Pan
,
G.
Yang
, and
B.
Li
, “
Numerical investigation of two-phase flow in and effervescent atomizer for water mist fire suppression
,”
Atomization Sprays
21
,
819
831
(
2011
).
18.
B.
Li
,
L.
Pan
, and
G.
Yang
, “
Numerical studies of the flow structure in the final discharge orifice of effervescent atomizer
,”
Atomization Sprays
22
,
259
274
(
2012
).
19.
Z. A.
Kaklar
and
M. R.
Ansari
, “
Numerical analysis of the internal flow and the mixing chamber length effects on the liquid film thickness exiting from the effervescent atomizer
,”
J. Therm. Anal. Calorim.
135
,
1881
1890
(
2019
).
20.
D.
Law
and
T. G.
Shepard
, “
Three-dimensional volume of fluid simulations of air bubble dynamics in a converging nozzle
,” in
Fluids Engineering Division Summer Meeting
,
2018
.
21.
S. A.
Esfarjani
and
A.
Dolatabadi
, “
A 3D simulation of two-phase flow in an effervescent atomizer for suspension plasma spray
,”
Surf. Coat. Technol.
203
,
2074
2080
(
2009
).
22.
K.
Pougatch
,
M.
Salcudean
, and
J.
McMillan
, “
Influence of mixture non-uniformity on the performance of an effervescent nozzle
,”
Fuel
116
,
601
607
(
2014
).
23.
B.
Maneshian
,
K.
Javadi
, and
M.
Taeibi Rahni
, “
Bubble dynamics in rotating flow under an accelerating field
,”
Phys. Fluids
30
,
082108
(
2018
).
24.
E. A.
Van Nierop
,
S.
Luther
,
J. J.
Bluemink
,
J.
Magnaudet
,
A.
Prosperetti
, and
D.
Lohse
, “
Drag and lift forces on bubbles in a rotating flow
,”
J. Fluid Mech.
571
,
439
454
(
2007
).
25.
C.-T.
Hsiao
,
J.
Ma
, and
G. L.
Chahine
, “
Numerical study of gravity effects on phase separation in a swirl chamber
,”
Chem. Eng. Sci.
165
,
177
185
(
2017
).
26.
M.
Ochowiak
, “
Discharge coefficient of effervescent atomizers with the swirl motion phenomenon
,”
Exp. Therm. Fluid Sci.
79
,
44
51
(
2016
).
27.
E.
Laurila
,
J.
Roenby
,
V.
Maakala
,
P.
Peltonen
,
H.
Kahila
, and
V.
Vuorinen
, “
Analysis of viscous fluid flow in a pressure-swirl atomizer using large-eddy simulation
,”
Int. J. Multiphase Flow
113
,
371
388
(
2019
).
28.
E.
Laurila
,
S.
Koivisto
,
A.
Kankkunen
,
K.
Saari
,
V.
Maakala
,
M.
Järvinen
, and
V.
Vuorinen
, “
Computational and experimental investigation of a swirl nozzle for viscous fluids
,”
Int. J. Multiphase Flow
128
,
103278
(
2020
).
29.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
30.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
31.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
32.
J.
Roenby
,
H.
Bredmose
, and
H.
Jasak
, “
A computational method for sharp interface advection
,”
R. Soc. Open Sci.
3
,
160405
(
2016
).
33.
H.
Jasak
,
H. G.
Weller
, and
A. D.
Gosman
, “
High resolution NVD differencing scheme for arbitrarily unstructured meshes
,”
Int. J. Numer. Methods Fluids
31
,
431
449
(
1999
).
34.
P.
Peltonen
,
K.
Saari
,
K.
Kukko
,
V.
Vuorinen
, and
J.
Partanen
, “
Large-eddy simulation of local heat transfer in plate and pin fin heat exchangers confined in a pipe flow
,”
Int. J. Heat Mass Transfer
134
,
641
655
(
2019
).
35.
A.
Laitinen
,
K.
Saari
,
K.
Kukko
,
P.
Peltonen
,
E.
Laurila
,
J.
Partanen
, and
V.
Vuorinen
, “
A computational fluid dynamics study by conjugate heat transfer in OpenFOAM: A liquid cooling concept for high power electronics
,”
Int. J. Heat Fluid Flow
85
,
108654
(
2020
).
36.
H.
Kahila
,
A.
Wehrfritz
,
O.
Kaario
, and
V.
Vuorinen
, “
Large-eddy simulation of dual-fuel ignition: Diesel spray injection into a lean methane-air mixture
,”
Combust. Flame
199
,
131
151
(
2019
).
37.
H.
Jasak
, “
Error analysis and estimation for the finite volume method with applications to fluid flows
,” Ph.D. thesis,
Imperial College London
,
1996
.
38.
S.
Hysing
,
S.
Turek
,
D.
Kuzmin
,
N.
Parolini
,
E.
Burman
,
S.
Ganesan
, and
L.
Tobiska
, “
Quantitative benchmark computations of two-dimensional bubble dynamics
,”
Int. J. Numer. Methods Fluids
60
,
1259
1288
(
2009
).
39.
C. E.
Brennen
,
Fundamentals of Multiphase Flow
(
Cambridge University Press
,
Cambridge
,
2005
).
40.
G.
Yadigaroglu
and
G. F.
Hewitt
,
Introduction to Multiphase Flow: Basic Concepts, Applications and Modelling
(
Springer International Publishing
,
Cham
,
2018
).
41.
J.
Lu
,
S.
Biswas
, and
G.
Tryggvason
, “
A DNS study of laminar bubbly flows in a vertical channel
,”
Int. J. Multiphase Flow
32
,
643
660
(
2006
).
42.
J.
Lu
and
G.
Tryggvason
, “
Numerical study of turbulent bubbly downflows in a vertical channel
,”
Phys. Fluids
18
,
103302
(
2006
).
43.
X.
Chu
,
Y.
Liu
,
W.
Wang
,
G.
Yang
,
B.
Weigand
, and
H.
Nemati
, “
Turbulence, pseudo-turbulence, and local flow topology in dispersed bubbly flow
,”
Phys. Fluids
32
,
083310
(
2020
).
44.
S.
Hosokawa
and
A.
Tomiyama
, “
Effects of bubble wake on coalescence between planar bubbles
,”
J. Fluid Sci. Technol.
1
,
94
104
(
2006
).
45.
A.
Hadidi
and
M. E.
Nimvari
, “
A geometric mass control approach in level set method to simulate multiphase flows with complex interface topologies, case study: Oblique coalescence of gas bubbles in a liquid
,”
Proc. Inst. Mech. Eng., Part E
234
,
56
69
(
2020
).
46.
A.
Zhang
,
Z.
Guo
,
Q.
Wang
, and
S.
Xiong
, “
Three-dimensional numerical simulation of bubble rising in viscous liquids: A conservative phase-field lattice-Boltzmann study
,”
Phys. Fluids
31
,
063106
(
2019
).
47.
A. E.
Komrakova
,
O.
Shardt
,
D.
Eskin
, and
J. J.
Derksen
, “
Lattice Boltzmann simulations of drop deformation and breakup in shear flow
,”
Int. J. Multiphase Flow
59
,
24
43
(
2014
).
48.
G.
Ryskin
and
L. G.
Leal
, “
Numerical solution of free-boundary problems in fluid mechanics. Part 3. Bubble deformation in an axisymmetric straining flow
,”
J. Fluid Mech.
148
,
37
43
(
1984
).
49.
H. A.
Stone
, “
Dynamics of drop deformation and breakup in viscous fluids
,”
Annu. Rev. Fluid Mech.
26
,
65
102
(
1994
).
50.
X.
Zhao
, “
Drop breakup in dilute Newtonian emulsions in simple shear flow: New drop breakup mechanisms
,”
J. Rheol.
51
,
367
392
(
2007
).
51.
N.
Barai
and
N.
Mandal
, “
Breakup modes of fluid drops in confined shear flows
,”
Phys. Fluids
28
,
073302
(
2016
).
52.
W. R.
Dean
, “
XVI. Note on the motion of fluid in a curved pipe
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
4
,
208
223
(
1927
).
53.
S. A.
Berger
,
L.
Talbot
, and
L. S.
Yao
, “
Flow in curved pipes
,”
Annu. Rev. Fluid Mech.
15
,
461
512
(
1983
).
54.
J.
Klostermann
,
K.
Schaake
, and
R.
Schwarze
, “
Numerical simulation of a single rising bubble by VOF with surface compression
,”
Int. J. Numer. Methods Fluids
71
,
960
982
(
2013
).
55.
R.
Subburaj
,
P.
Khandelwal
, and
S.
Vengadesan
, “
Numerical study of flow past an elliptic cylinder near a free surface
,”
Phys. Fluids
30
,
103603
(
2018
).
56.
Y.
Cao
and
R.
Macián-Juan
, “
Numerical investigation of central breakup of large bubble induced by liquid jet
,”
Phys. Fluids
32
,
033302
(
2020
).
57.
L.
Gamet
,
M.
Scala
,
J.
Roenby
,
H.
Scheufler
, and
J.-L.
Pierson
, “
Validation of volume-of-fluid OpenFOAM® isoAdvector solvers using single bubble benchmarks
,”
Comput. Fluids
213
,
104722
(
2020
).
You do not currently have access to this content.