Temporal linear instability of viscous coaxial jets under a radial thermal field is carried out by considering axisymmetric and non-axisymmetric disturbances. The interfacial tensions of different fluids are taken to be temperature dependent. The para-sinuous, para-varicose, and helical unstable modes are identified in the Rayleigh regime. The energy budget is also employed to explore the relative importance of thermal-induced stresses on the jet instability at the most unstable wavenumber by changing the dimensionless parameters. It is shown that decreasing the temperature ratio of inner fluid to surrounding fluid (T13) promotes the jet instability. For coaxial jets at T13 > 1, the Marangoni flow makes coaxial jets more stable, and increasing the fluid thermal conductivity suppresses the jet instability. For coaxial jets at T13 < 1, however, their influences on the jet instability are opposite. Compared with the thermal-induced stresses at the inner and outer interfaces, the inner interfacial tension is the main factor dominating the flow. Increasing either inner interfacial tension or outer surface tension and decreasing viscosity of any fluid can promote the instability of coaxial jets. The variations of thermal conductivity and specific heat capacity of either inner or surrounding fluids apparently influence the jet instability of the para-varicose mode, but hardly influence that of the para-sinuous mode. This work would provide great insight into the physical mechanism of thermal jet instability in various applications.

1.
O. A.
Basaran
,
H.
Gao
, and
P. P.
Bhat
, “
Nonstandard inkjets
,”
Annu. Rev. Fluid Mech.
45
,
85
113
(
2013
).
2.
E. J.
Vega
,
A. M.
Gañán-Calvo
,
J. M.
Montanero
,
M. G.
Cabezas
, and
M. A.
Herrada
, “
A novel technique for producing metallic microjets and microdrops
,”
Microfluid. Nanofluid.
14
,
101
111
(
2013
).
3.
J. J.
Kaufman
,
G.
Tao
,
S.
Shabahang
,
E.-H.
Banaei
,
D. S.
Deng
,
X.
Liang
,
S. G.
Johnson
,
Y.
Fink
, and
A. F.
Abouraddy
, “
Structured spheres generated by an in-fibre fluid instability
,”
Nature
487
,
463
467
(
2012
).
4.
G.
Loke
,
W.
Yan
,
T.
Khudiyev
,
G.
Noel
, and
Y.
Fink
, “
Recent progress and perspectives of thermally drawn multimaterial fiber electronics
,”
Adv. Mater.
32
,
1904911
(
2020
).
5.
G.
Balestra
,
M.
Gloor
, and
L.
Kleiser
, “
Absolute and convective instabilities of heated coaxial jet flow
,”
Phys. Fluids
27
,
054101
(
2015
).
6.
M.
Gloor
,
S.
Bühler
, and
L.
Kleiser
, “
Transition to turbulence and noise radiation in heated coaxial jet flows
,”
Phys. Fluids
28
,
044103
(
2016
).
7.
C. H.
Hertz
and
B.
Hermanrud
, “
A liquid compound jet
,”
J. Fluid Mech.
131
,
271
(
1983
).
8.
A.
Sanz
and
J.
Meseguer
, “
One-dimensional linear analysis of the compound jet
,”
J. Fluid Mech.
159
,
55
68
(
1985
).
9.
J.
Meyer
and
D.
Weihs
, “
Capillary instability of an annular liquid jet
,”
J. Fluid Mech.
179
,
531
(
1987
).
10.
S.
Radev
and
B.
Tchavdarov
, “
Linear capillary instability of compound jets
,”
Int. J. Multiphase Flow
14
,
67
79
(
1988
).
11.
J.
Shen
and
X.
Li
, “
Instability of an annular viscous liquid jet
,”
Acta Mech.
114
,
167
183
(
1996
).
12.
A.
Chauhan
,
C.
Maldarelli
,
D. T.
Papageorgiou
, and
D. S.
Rumschitzki
, “
Temporal instability of compound threads and jets
,”
J. Fluid Mech.
420
,
1
25
(
2000
).
13.
F.
Chen
,
J.-Y.
Tsaur
,
F.
Durst
, and
S. K.
Das
, “
On the axisymmetry of annular jet instabilities
,”
J. Fluid Mech.
488
,
355
367
(
2003
).
14.
A.-C.
Ruo
,
F.
Chen
, and
M.-H.
Chang
, “
Linear instability of compound jets with nonaxisymmetric disturbances
,”
Phys. Fluids
21
,
012101
(
2009
).
15.
A.
Segalini
and
A.
Talamelli
, “
Experimental analysis of dominant instabilities in coaxial jets
,”
Phys. Fluids
23
,
024103
(
2011
).
16.
M. F.
Afzaal
,
J.
Uddin
,
A. M.
Alsharif
, and
M.
Mohsin
, “
Temporal and spatial instability of a compound jet in a surrounding gas
,”
Phys. Fluids
27
,
044106
(
2015
).
17.
M. F.
Afzaal
and
J.
Uddin
, “
Nonaxisymmetric disturbances in compound liquid jets falling under gravity
,”
Phys. Rev. E
94
,
043114
(
2016
).
18.
H.-Y.
Ye
,
L.-J.
Yang
, and
Q.-F.
Fu
, “
Instability of viscoelastic compound jets
,”
Phys. Fluids
28
,
043101
(
2016
).
19.
Z. H.
Chaudhury
, “
Heat transfer in a radial liquid jet
,”
J. Fluid Mech.
20
,
501
511
(
1964
).
20.
A. E.
Gill
and
P. G.
Drazin
, “
Note on instability of compressible jets and wakes to long-wave disturbances
,”
J. Fluid Mech.
22
,
415
(
1965
).
21.
J.-J.
Xu
and
S. H.
Davis
, “
Instability of capillary jets with thermocapillarity
,”
J. Fluid Mech.
161
,
1
25
(
1985
).
22.
P. A.
Monkewitz
and
K. D.
Sohn
, “
Absolute instability in hot jets
,”
AIAA J.
26
,
911
916
(
1988
).
23.
H. A.
Dijkstra
and
P. H.
Steen
, “
Thermocapillary stabilization of the capillary breakup of an annular film of liquid
,”
J. Fluid Mech.
229
,
205
228
(
1991
).
24.
F.
Mashayek
and
N.
Ashgriz
, “
Nonlinear instability of liquid jets with thermocapillarity
,”
J. Fluid Mech.
283
,
97
123
(
1995
).
25.
E. P.
Furlani
, “
Temporal instability of viscous liquid microjets with spatially varying surface tension
,”
J. Phys. A: Math. Theor.
38
,
263
276
(
2005
).
26.
D.
Perrault-Joncas
and
S. A.
Maslowe
, “
Linear stability of a compressible coaxial jet with continuous velocity and temperature profiles
,”
Phys. Fluids
20
,
074102
(
2008
).
27.
L.
Mohanta
,
F.-B.
Cheung
, and
S. M.
Bajorek
, “
Stability of coaxial jets confined in a tube with heat and mass transfer
,”
Physica A
443
,
333
346
(
2016
).
28.
S.
Mowlavi
,
I.
Shukla
,
P.-T.
Brun
, and
F.
Gallaire
, “
Particle size selection in capillary instability of locally heated coaxial fiber
,”
Phys. Rev. Fluids
4
,
064003
(
2019
).
29.
B.
Jia
,
L.
Xie
,
X.
Cui
,
L.
Yang
, and
Q.
Fu
, “
Linear stability of confined coaxial jets in the presence of gas velocity oscillations with heat and mass transfer
,”
Phys. Fluids
31
,
092101
(
2019
).
30.
S.
Li
,
R.
Yang
,
K.
Mu
,
X.
Luo
, and
T.
Si
, “
Thermal effects on the instability of coaxial liquid jets in the core of a gas stream
,”
Phys. Fluids
31
,
032106
(
2019
).
31.
M.
Lappa
,
R.
Savino
, and
R.
Monti
, “
Three-dimensional numerical simulation of Marangoni instabilities in liquid bridges: Influence of geometrical aspect ratio
,”
Int. J. Numer. Methods Fluids
36
,
53
90
(
2001
).
32.
P.
Yecko
,
S.
Zaleski
, and
J.-M.
Fullana
, “
Viscous modes in two-phase mixing layers
,”
Phys. Fluids
14
,
4115
4122
(
2002
).
33.
G.
Li
,
X.
Luo
,
T.
Si
, and
R. X.
Xu
, “
Temporal instability of coflowing liquid-gas jets under an electric field
,”
Phys. Fluids
26
,
054101
(
2014
).
34.
S. P.
Lin
and
J. N.
Chen
, “
Role played by the interfacial shear in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe
,”
J. Fluid Mech.
376
,
37
51
(
1998
).
35.
F.
Li
,
X.-Y.
Yin
, and
X.-Z.
Yin
, “
Axisymmetric and non-axisymmetric instability of an electrified viscous coaxial jet
,”
J. Fluid Mech.
632
,
199
225
(
2009
).
36.
J.-P.
Matas
,
A.
Delon
, and
A.
Cartellier
, “
Shear instability of an axisymmetric air–water coaxial jet
,”
J. Fluid Mech.
843
,
575
600
(
2018
).
37.
H.
Ye
,
J.
Peng
, and
L.
Yang
, “
Instability of eccentric compound threads
,”
Phys. Fluids
29
,
082110
(
2017
).
You do not currently have access to this content.