This study is devoted to the numerical analysis of the result of light distribution after passing it through a shock wave, depending on the degree of gas rarefaction. The obtained numerical results allowed reproducing the experimental shadowgraph images obtained in our study. The range of shock wave thickness (from 0 mm to 20 mm) allowed considering the qualitative change in the light distribution on the screen during switching from the regime where the wave nature of light has the greatest influence on the distribution of light to the regime of the geometric optics approach. As a result, the criteria for the applicability of the shadowgraphy technique for the experimental description of the shock wave internal structure were obtained.
REFERENCES
1.
2.
G. S.
Settles
, Schlieren and Shadowgraph Techniques
(Springer
, Berlin
, 2001
).3.
G. S.
Settles
and M. J.
Hargather
, “A review of recent developments in schlieren and shadowgraph techniques
,” Meas. Sci. Technol.
28
, 042001
(2017
).4.
H.
Kleine
, H.
Grönig
, and K.
Takayama
, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows
,” Opt. Lasers Eng.
44
, 170
–189
(2006
).5.
T. V.
Bazhenova
, V. V.
Golub
, L. G.
Gvozdeva
, and A. L.
Kotelnikov
, “Half a century of continuous shock interaction investigations in the joint institute for high temperatures of Russian academy of sciences
,” Shock Waves
24
, 347
–363
(2014
).6.
B.
Skews
and H.
Kleine
, “Unsteady flow diagnostics using weak perturbations
,” Exp. Fluids
46
, 65
–76
(2009
).7.
E.
Koroteeva
, I.
Znamenskaya
, and I.
Doroshchenko
, “Experimental and numerical investigation of a flow induced by a pulsed plasma column
,” Phys. Fluids
30
, 086103
(2018
).8.
P.
Prasanna Simha
and P. S.
Mohan Rao
, “Universal trends in human cough airflows at large distances
,” Phys. Fluids
32
, 081905
(2020
).9.
I.
Ivanov
, I.
Kryukov
, D.
Orlov
, and I.
Znamenskaya
, “Investigations of shock wave interaction with nanosecond surface discharge
,” Exp Fluids
48
, 607
–613
(2010
).10.
A. N.
Semenov
and M. P.
Syshchikova
, “Properties of mach reflection in the interaction of shock waves with a stationary wedge
,” Combust., Explos. Shock Waves
11
, 506
–515
(1975
).11.
A.
Sävert
, S. P. D.
Mangles
, M.
Schnell
, E.
Siminos
, J. M.
Cole
, M.
Leier
, M.
Reuter
, M. B.
Schwab
, M.
Möller
, K.
Poder
, O.
Jäckel
, G. G.
Paulus
, C.
Spielmann
, S.
Skupin
, Z.
Najmudin
, and M. C.
Kaluza
, “Direct observation of the injection dynamics of a laser wakefield accelerator using few-femtosecond shadowgraphy
,” Phys. Rev. Lett.
115
, 055002
(2015
).12.
P.
Yuldashev
, S.
Ollivier
, M.
Averiyanov
, O.
Sapozhnikov
, V.
Khokhlova
, and P.
Blanc-Benon
, “Nonlinear propagation of spark-generated N-waves in air: Modeling and measurements using acoustical and optical methods
,” J. Acoust. Soc. Am.
128
, 3321
–3333
(2010
).13.
H. J.
Pfeifer
, H. D.
Vom Stein
, and B.
Koch
, “Mathematical and experimental analysis of light diffraction on plane shock waves
,” in Proceedings of International Congress on High Speed Photography
, 9th ed., edited by G.
Ben-Dor
, O.
Sadot
, and O.
Igra
(1970
), p. 423
.14.
J.
Panda
and G.
Adamovsky
, “Laser light scattering by shock waves
,” Phys. Fluids
7
, 2271
–2279
(1995
).15.
S. A.
Bystrov
, H.
Honma
, V. I.
Ivanov
, J.
Koreeda
, K.
Maeno
, F. V.
Shugaev
, and H.
Yanagisawa
, “Density reconstruction from laser schlieren signal in shock tube experiments
,” Shock Waves
8
, 183
–189
(1998
).16.
S. I.
Hariharan
and D. K.
Johnson
, “Transmission of light waves through normal shocks
,” Appl. Opt.
34
, 7752
–7758
(1995
).17.
I. A.
Znamenskaya
, D. F.
Latfullin
, A. E.
Lutski
, and I. V.
Mursenkova
, “Energy deposition in boundary gas layer during initiation of nanosecond sliding surface discharge
,” Tech. Phys. Lett.
36
, 795
–797
(2010
).18.
19.
C.
Cercignani
, The Boltzmann Equation and its Applications
(Springer-Verlag
, New York
, 1988
).20.
I. V.
Mursenkova
, I. A.
Znamenskaya
, and A. E.
Lutsky
, “Influence of shock waves from plasma actuators on transonic and supersonic airflow
,” J. Phys. D: Appl. Phys.
51
, 105201
(2018
).21.
W. J. M.
Rankine
, “XV. On the thermodynamic theory of waves of finite longitudinal disturbance
,” Philos. Trans. R. Soc. London
160
, 277
–288
(1870
).22.
23.
R.
Becker
, “Stoßwelle und detonation
,” Z. Phys.
8
, 321
–362
(1922
).24.
H. M.
Mott-Smith
, “The solution of the Boltzmann equation for a shock wave
,” Phys. Rev.
82
, 885
–892
(1951
).25.
L. H.
Holway
, “Existence of kinetic theory solutions to the shock structure problem
,” Phys. Fluids
7
, 911
–913
(1964
).26.
F. J.
Uribe
and R. M.
Velasco
, “Exact solutions for shock waves in dilute gases
,” Phys. Rev. E
100
, 023118
(2019
).27.
G. R.
Cowan
and D. F.
Hornig
, “The experimental determination of the thickness of a shock front in a gas
,” J. Chem. Phys.
18
, 1008
–1018
(1950
).28.
K.
Hansen
and D. F.
Hornig
, “Thickness of shock fronts in argon
,” J. Chem. Phys.
33
, 913
–916
(1960
).29.
F.
Robben
and L.
Talbot
, “Measurement of shock wave thickness by the electron beam fluorescence method
,” Phys. Fluids
9
, 633
–643
(1966
).30.
H.
Alsmeyer
, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam
,” J. Fluid Mech.
74
, 497
–513
(1976
).31.
G.
Pham-Van-Diep
, D.
Erwin
, and E. P.
Muntz
, “Nonequilibrium molecular motion in a hypersonic shock wave
,” Science
245
, 624
–626
(1989
).32.
T.
Ohwada
, “Structure of normal shock waves: Direct numerical analysis of the Boltzmann equation for hard-sphere molecules
,” Phys. Fluids A
5
, 217
–234
(1993
).33.
O. I.
Dodulad
and F. G.
Tcheremissine
, “Computation of a shock wave structure in monatomic gas with accuracy control
,” Comput. Math. Math. Phys.
53
, 827
–844
(2013
).34.
E. A.
Malkov
, Y. A.
Bondar
, A. A.
Kokhanchik
, S. O.
Poleshkin
, and M. S.
Ivanov
, “High-accuracy deterministic solution of the Boltzmann equation for the shock wave structure
,” Shock Waves
25
, 387
–397
(2015
).35.
V. A.
Rykov
, V. A.
Titarev
, and E. M.
Shakhov
, “Shock wave structure in a diatomic gas based on a kinetic model
,” Fluid Dyn.
43
, 316
–326
(2008
).36.
G. V.
Shoev
, M. Y.
Timokhin
, and Y. A.
Bondar
, “On the total enthalpy behavior inside a shock wave
,” Phys. Fluids
32
, 041703
(2020
).37.
O. M.
Belotserkovskii
and V. E.
Yanitskii
, “The statistical method of particles in cells for the solution of problems of the dynamics of a rarefied gas-II. Computational aspects of the method
,” USSR Comput. Math. Math. Phys.
15
, 184
–198
(1975
).38.
A. I.
Erofeev
and O. G.
Friedlander
, “Momentum and energy transfer in a shock wave
,” Fluid Dynamics
379
, 614
–623
(2002
).39.
M. Y.
Timokhin
, Y. A.
Bondar
, A. A.
Kokhanchik
, M. S.
Ivanov
, I. E.
Ivanov
, and I. A.
Kryukov
, “Study of the shock wave structure by regularized Grad’s set of equations
,” Phys. Fluids
27
, 037101
(2015
).40.
A. V.
Bobylev
, M.
Bisi
, M. P.
Cassinari
, and G.
Spiga
, “Shock wave structure for generalized Burnett equations
,” Phys. Fluids
23
, 030607
(2011
).41.
G. C.
Pham-Van-Diep
, D. A.
Erwin
, and E. P.
Muntz
, “Testing continuum descriptions of low-mach-number shock structures
,” J. Fluid Mech.
232
, 403
–413
(1991
).42.
M. Y.
Timokhin
, H.
Struchtrup
, A. A.
Kokhanchik
, and Y. A.
Bondar
, “The analysis of different variants of R13 equations applied to the shock-wave structure
,” AIP Conf. Proc.
1786
, 140006
(2016
).43.
M. Y.
Timokhin
, H.
Struchtrup
, A. A.
Kokhanchik
, and Y. A.
Bondar
, “Different variants of R13 moment equations applied to the shock-wave structure
,” Phys. Fluids
29
, 037105
(2017
).44.
R. M.
Velasco
and F. J.
Uribe
, “Shock-wave structure according to a linear irreversible thermodynamic model
,” Phys. Rev. E
99
, 023114
(2019
).45.
J. H.
Gladstone
and T. P.
Dale
, “Researches on the refraction, dispersion, and sensitiveness of liquids
,” Philos. Trans. R. Soc. London
153
, 317
–343
(1863
).46.
N. B.
Bazylev
and N. A.
Fomin
, Quantitative Flow Visualization Based on Speckle Technologies
(Belarusian science
, Minsk
, 2016
).47.
I. E.
Ivanov
, I. A.
Kryukov
, and M. Y.
Timokhin
, “Application of moment equations to the mathematical simulation of gas microflows
,” Comput. Math. Math. Phys.
53
, 1534
–1550
(2013
).48.
S.
Chapman
and T. G.
Cowling
, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
(Cambridge mathematical library
, 1991
).49.
Y. A.
Kravtsov
and Y. I.
Orlov
, Geometrical Optics of Inhomogeneous Media
(Springer-Verlag
, Berlin
, 1990
).50.
A.
Lipson
, S. G.
Lipson
, and H.
Lipson
, Optical Physics
(Cambridge University Press
, Cambridge
, 2011
).51.
I. A.
Znamenskaya
, I. E.
Ivanov
, I. A.
Kryukov
, I. V.
Mursenkova
, and M. Y.
Timokhin
, “Shock-wave structure formation by nanosecond discharge in helium
,” Tech. Phys. Lett.
40
, 533
–536
(2014
).52.
V. G.
Maslennikov
and V. A.
Sakharov
, “Model for the shock actuation of a wedge-shaped nozzle with allowance for detachment of the flow
,” Tech. Phys.
42
, 587
–590
(1997
).53.
V.
Vlasov
, G.
Zalogin
, and K.
Prutko
, “Excitation of electronic states and atom ionization behind strong shock waves in air
,” Phys.-Chem. Kinet. Gas Dyn.
15
(4
) (2014
), available at www.chemphys.edu.ru/pdf/2014-11-28-002.pdf.© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.