This study is devoted to the numerical analysis of the result of light distribution after passing it through a shock wave, depending on the degree of gas rarefaction. The obtained numerical results allowed reproducing the experimental shadowgraph images obtained in our study. The range of shock wave thickness (from 0 mm to 20 mm) allowed considering the qualitative change in the light distribution on the screen during switching from the regime where the wave nature of light has the greatest influence on the distribution of light to the regime of the geometric optics approach. As a result, the criteria for the applicability of the shadowgraphy technique for the experimental description of the shock wave internal structure were obtained.

1.
W.
Merzkirch
,
Flow Visualization
(
Academic
,
New York
,
1987
).
2.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques
(
Springer
,
Berlin
,
2001
).
3.
G. S.
Settles
and
M. J.
Hargather
, “
A review of recent developments in schlieren and shadowgraph techniques
,”
Meas. Sci. Technol.
28
,
042001
(
2017
).
4.
H.
Kleine
,
H.
Grönig
, and
K.
Takayama
, “
Simultaneous shadow, schlieren and interferometric visualization of compressible flows
,”
Opt. Lasers Eng.
44
,
170
189
(
2006
).
5.
T. V.
Bazhenova
,
V. V.
Golub
,
L. G.
Gvozdeva
, and
A. L.
Kotelnikov
, “
Half a century of continuous shock interaction investigations in the joint institute for high temperatures of Russian academy of sciences
,”
Shock Waves
24
,
347
363
(
2014
).
6.
B.
Skews
and
H.
Kleine
, “
Unsteady flow diagnostics using weak perturbations
,”
Exp. Fluids
46
,
65
76
(
2009
).
7.
E.
Koroteeva
,
I.
Znamenskaya
, and
I.
Doroshchenko
, “
Experimental and numerical investigation of a flow induced by a pulsed plasma column
,”
Phys. Fluids
30
,
086103
(
2018
).
8.
P.
Prasanna Simha
and
P. S.
Mohan Rao
, “
Universal trends in human cough airflows at large distances
,”
Phys. Fluids
32
,
081905
(
2020
).
9.
I.
Ivanov
,
I.
Kryukov
,
D.
Orlov
, and
I.
Znamenskaya
, “
Investigations of shock wave interaction with nanosecond surface discharge
,”
Exp Fluids
48
,
607
613
(
2010
).
10.
A. N.
Semenov
and
M. P.
Syshchikova
, “
Properties of mach reflection in the interaction of shock waves with a stationary wedge
,”
Combust., Explos. Shock Waves
11
,
506
515
(
1975
).
11.
A.
Sävert
,
S. P. D.
Mangles
,
M.
Schnell
,
E.
Siminos
,
J. M.
Cole
,
M.
Leier
,
M.
Reuter
,
M. B.
Schwab
,
M.
Möller
,
K.
Poder
,
O.
Jäckel
,
G. G.
Paulus
,
C.
Spielmann
,
S.
Skupin
,
Z.
Najmudin
, and
M. C.
Kaluza
, “
Direct observation of the injection dynamics of a laser wakefield accelerator using few-femtosecond shadowgraphy
,”
Phys. Rev. Lett.
115
,
055002
(
2015
).
12.
P.
Yuldashev
,
S.
Ollivier
,
M.
Averiyanov
,
O.
Sapozhnikov
,
V.
Khokhlova
, and
P.
Blanc-Benon
, “
Nonlinear propagation of spark-generated N-waves in air: Modeling and measurements using acoustical and optical methods
,”
J. Acoust. Soc. Am.
128
,
3321
3333
(
2010
).
13.
H. J.
Pfeifer
,
H. D.
Vom Stein
, and
B.
Koch
, “
Mathematical and experimental analysis of light diffraction on plane shock waves
,” in
Proceedings of International Congress on High Speed Photography
, 9th ed., edited by
G.
Ben-Dor
,
O.
Sadot
, and
O.
Igra
(
1970
), p.
423
.
14.
J.
Panda
and
G.
Adamovsky
, “
Laser light scattering by shock waves
,”
Phys. Fluids
7
,
2271
2279
(
1995
).
15.
S. A.
Bystrov
,
H.
Honma
,
V. I.
Ivanov
,
J.
Koreeda
,
K.
Maeno
,
F. V.
Shugaev
, and
H.
Yanagisawa
, “
Density reconstruction from laser schlieren signal in shock tube experiments
,”
Shock Waves
8
,
183
189
(
1998
).
16.
S. I.
Hariharan
and
D. K.
Johnson
, “
Transmission of light waves through normal shocks
,”
Appl. Opt.
34
,
7752
7758
(
1995
).
17.
I. A.
Znamenskaya
,
D. F.
Latfullin
,
A. E.
Lutski
, and
I. V.
Mursenkova
, “
Energy deposition in boundary gas layer during initiation of nanosecond sliding surface discharge
,”
Tech. Phys. Lett.
36
,
795
797
(
2010
).
18.
M.
Kogan
,
Rarefied Gas Dynamics
(
Plenum
,
New York
,
1969
).
19.
C.
Cercignani
,
The Boltzmann Equation and its Applications
(
Springer-Verlag
,
New York
,
1988
).
20.
I. V.
Mursenkova
,
I. A.
Znamenskaya
, and
A. E.
Lutsky
, “
Influence of shock waves from plasma actuators on transonic and supersonic airflow
,”
J. Phys. D: Appl. Phys.
51
,
105201
(
2018
).
21.
W. J. M.
Rankine
, “
XV. On the thermodynamic theory of waves of finite longitudinal disturbance
,”
Philos. Trans. R. Soc. London
160
,
277
288
(
1870
).
22.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed. (
Pergamon
,
1987
).
23.
R.
Becker
, “
Stoßwelle und detonation
,”
Z. Phys.
8
,
321
362
(
1922
).
24.
H. M.
Mott-Smith
, “
The solution of the Boltzmann equation for a shock wave
,”
Phys. Rev.
82
,
885
892
(
1951
).
25.
L. H.
Holway
, “
Existence of kinetic theory solutions to the shock structure problem
,”
Phys. Fluids
7
,
911
913
(
1964
).
26.
F. J.
Uribe
and
R. M.
Velasco
, “
Exact solutions for shock waves in dilute gases
,”
Phys. Rev. E
100
,
023118
(
2019
).
27.
G. R.
Cowan
and
D. F.
Hornig
, “
The experimental determination of the thickness of a shock front in a gas
,”
J. Chem. Phys.
18
,
1008
1018
(
1950
).
28.
K.
Hansen
and
D. F.
Hornig
, “
Thickness of shock fronts in argon
,”
J. Chem. Phys.
33
,
913
916
(
1960
).
29.
F.
Robben
and
L.
Talbot
, “
Measurement of shock wave thickness by the electron beam fluorescence method
,”
Phys. Fluids
9
,
633
643
(
1966
).
30.
H.
Alsmeyer
, “
Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam
,”
J. Fluid Mech.
74
,
497
513
(
1976
).
31.
G.
Pham-Van-Diep
,
D.
Erwin
, and
E. P.
Muntz
, “
Nonequilibrium molecular motion in a hypersonic shock wave
,”
Science
245
,
624
626
(
1989
).
32.
T.
Ohwada
, “
Structure of normal shock waves: Direct numerical analysis of the Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids A
5
,
217
234
(
1993
).
33.
O. I.
Dodulad
and
F. G.
Tcheremissine
, “
Computation of a shock wave structure in monatomic gas with accuracy control
,”
Comput. Math. Math. Phys.
53
,
827
844
(
2013
).
34.
E. A.
Malkov
,
Y. A.
Bondar
,
A. A.
Kokhanchik
,
S. O.
Poleshkin
, and
M. S.
Ivanov
, “
High-accuracy deterministic solution of the Boltzmann equation for the shock wave structure
,”
Shock Waves
25
,
387
397
(
2015
).
35.
V. A.
Rykov
,
V. A.
Titarev
, and
E. M.
Shakhov
, “
Shock wave structure in a diatomic gas based on a kinetic model
,”
Fluid Dyn.
43
,
316
326
(
2008
).
36.
G. V.
Shoev
,
M. Y.
Timokhin
, and
Y. A.
Bondar
, “
On the total enthalpy behavior inside a shock wave
,”
Phys. Fluids
32
,
041703
(
2020
).
37.
O. M.
Belotserkovskii
and
V. E.
Yanitskii
, “
The statistical method of particles in cells for the solution of problems of the dynamics of a rarefied gas-II. Computational aspects of the method
,”
USSR Comput. Math. Math. Phys.
15
,
184
198
(
1975
).
38.
A. I.
Erofeev
and
O. G.
Friedlander
, “
Momentum and energy transfer in a shock wave
,”
Fluid Dynamics
379
,
614
623
(
2002
).
39.
M. Y.
Timokhin
,
Y. A.
Bondar
,
A. A.
Kokhanchik
,
M. S.
Ivanov
,
I. E.
Ivanov
, and
I. A.
Kryukov
, “
Study of the shock wave structure by regularized Grad’s set of equations
,”
Phys. Fluids
27
,
037101
(
2015
).
40.
A. V.
Bobylev
,
M.
Bisi
,
M. P.
Cassinari
, and
G.
Spiga
, “
Shock wave structure for generalized Burnett equations
,”
Phys. Fluids
23
,
030607
(
2011
).
41.
G. C.
Pham-Van-Diep
,
D. A.
Erwin
, and
E. P.
Muntz
, “
Testing continuum descriptions of low-mach-number shock structures
,”
J. Fluid Mech.
232
,
403
413
(
1991
).
42.
M. Y.
Timokhin
,
H.
Struchtrup
,
A. A.
Kokhanchik
, and
Y. A.
Bondar
, “
The analysis of different variants of R13 equations applied to the shock-wave structure
,”
AIP Conf. Proc.
1786
,
140006
(
2016
).
43.
M. Y.
Timokhin
,
H.
Struchtrup
,
A. A.
Kokhanchik
, and
Y. A.
Bondar
, “
Different variants of R13 moment equations applied to the shock-wave structure
,”
Phys. Fluids
29
,
037105
(
2017
).
44.
R. M.
Velasco
and
F. J.
Uribe
, “
Shock-wave structure according to a linear irreversible thermodynamic model
,”
Phys. Rev. E
99
,
023114
(
2019
).
45.
J. H.
Gladstone
and
T. P.
Dale
, “
Researches on the refraction, dispersion, and sensitiveness of liquids
,”
Philos. Trans. R. Soc. London
153
,
317
343
(
1863
).
46.
N. B.
Bazylev
and
N. A.
Fomin
,
Quantitative Flow Visualization Based on Speckle Technologies
(
Belarusian science
,
Minsk
,
2016
).
47.
I. E.
Ivanov
,
I. A.
Kryukov
, and
M. Y.
Timokhin
, “
Application of moment equations to the mathematical simulation of gas microflows
,”
Comput. Math. Math. Phys.
53
,
1534
1550
(
2013
).
48.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
(
Cambridge mathematical library
,
1991
).
49.
Y. A.
Kravtsov
and
Y. I.
Orlov
,
Geometrical Optics of Inhomogeneous Media
(
Springer-Verlag
,
Berlin
,
1990
).
50.
A.
Lipson
,
S. G.
Lipson
, and
H.
Lipson
,
Optical Physics
(
Cambridge University Press
,
Cambridge
,
2011
).
51.
I. A.
Znamenskaya
,
I. E.
Ivanov
,
I. A.
Kryukov
,
I. V.
Mursenkova
, and
M. Y.
Timokhin
, “
Shock-wave structure formation by nanosecond discharge in helium
,”
Tech. Phys. Lett.
40
,
533
536
(
2014
).
52.
V. G.
Maslennikov
and
V. A.
Sakharov
, “
Model for the shock actuation of a wedge-shaped nozzle with allowance for detachment of the flow
,”
Tech. Phys.
42
,
587
590
(
1997
).
53.
V.
Vlasov
,
G.
Zalogin
, and
K.
Prutko
, “
Excitation of electronic states and atom ionization behind strong shock waves in air
,”
Phys.-Chem. Kinet. Gas Dyn.
15
(
4
) (
2014
), available at www.chemphys.edu.ru/pdf/2014-11-28-002.pdf.
You do not currently have access to this content.