In the context of modeling turbulent scalar mixing using probability density function (PDF) methods, the treatment of molecular mixing is of paramount importance. The conditional moment closure (CMC) offers a high-fidelity description for molecular mixing in nonpremixed flows. Recent work has demonstrated that first-order CMC can be implemented numerically using the moments of the conditioning variable and first-order joint moments of the scalar of interest. When solving the CMC using, for example, quadrature-based moment methods (QBMM), a functional form must be chosen for the conditional scalar dissipation rate (CSDR) of the conditioning variable. In prior work, the CSDR was chosen to produce a β-PDF for the conditioning variable (mixture fraction) at steady state. This choice has the advantage that the system of moment equations used in QBMM-CMC can be written in closed form. In this work, an alternative choice for the CSDR is investigated, namely, the amplitude mapping closure (AMC). With the AMC, the moment equations can be closed using the quadrature method of moments incorporated into a realizable ordinary differential equation solver. Results are compared with the β-CSDR closure for binary, passive scalar mixing in homogeneous single- and disperse-phase turbulent flows. It is also demonstrated that the moment formulation of CMC provides a straightforward method for modeling the effect of differential diffusion in the context of CMC.

1.
T. S.
Lundgren
, “
Distribution functions in the statistical theory of turbulence
,”
Phys. Fluids
10
,
969
975
(
1967
).
2.
E. E.
O’Brien
, “
Closure approximations applied to stochastically distributed second-order reactions
,”
Phys. Fluids
9
,
1561
1565
(
1966
).
3.
E. E.
O’Brien
, “
Closure for stochastically distributed second-order reactants
,”
Phys. Fluids
11
,
1883
1888
(
1968
).
4.
E. E.
O’Brien
, “
Turbulent mixing of two rapidly reacting chemical species
,”
Phys. Fluids
14
,
1326
1331
(
1971
).
5.
E. E.
O’Brien
, “
The probability density function approach to reacting turbulent flows
,” in
Turbulent Reacting Flows
, edited by
P. A.
Libby
and
F. A.
Williams
(
Springer
,
Berlin
,
1980
), pp.
185
203
.
6.
S. B.
Pope
, “
PDF methods for turbulent reactive flows
,”
Prog. Energy Combust. Sci.
11
,
119
192
(
1985
).
7.
N.
Peters
,
Turbulent Combustion
, Cambridge Monographs on Mechanics (
Cambridge University Press
,
Cambridge, UK
,
2000
).
8.
S. B.
Pope
, “
Small scales, many species and the manifold challenges of turbulent combustion
,”
Proc. Combust. Inst.
34
,
1
31
(
2013
).
9.
C.
Dopazo
and
E. E.
O’Brien
, “
Isochoric turbulent mixing of two rapidly reacting chemical species with chemical heat release
,”
Phys. Fluids
16
(
12
),
2075
2081
(
1973
).
10.
V.
Eswaran
and
S. B.
Pope
, “
Direct numerical simulations of the turbulent mixing of a passive scalar
,”
Phys. Fluids
31
,
506
520
(
1988
).
11.
H.
Chen
,
S.
Chen
, and
R. H.
Kraichnan
, “
Probability distribution of a stochastically advected scalar field
,”
Phys. Rev. Lett.
63
(
24
),
2657
2660
(
1989
).
12.
R. H.
Kraichnan
, “
Closures for probability distributions
,”
Bull. Am. Phys. Soc.
34
,
2298
(
1989
).
13.
S. B.
Pope
, “
Mapping closures for turbulent mixing and reaction
,”
Theor. Comput. Fluid Dyn.
2
(
5-6
),
255
270
(
1991
).
14.
F.
Gao
and
E. E.
O’Brien
, “
A mapping closure for multispecies Fickian diffusion
,”
Phys. Fluids A
3
,
956
(
1991
).
15.
E. E.
O’Brien
and
T.-L.
Jiang
, “
The conditional dissipation rate of an initially binary scalar in homogeneous turbulence
,”
Phys. Fluids A
3
(
12
),
3121
3123
(
1991
).
16.
E. E.
O’Brien
and
A.
Sahay
, “
Asymptotic behavior of the amplitude mapping closure
,”
Phys. Fluids A
4
,
1773
(
1992
).
17.
A.
Sahay
and
E. E.
O’Brien
, “
Uniform mean scalar gradient in grid turbulence: Conditioned dissipation and production
,”
Phys. Fluids A
5
,
1076
(
1993
).
18.
C. K.
Madnia
,
S. H.
Frankel
, and
P.
Givi
, “
Direct numerical simulations of the unmixedness in a homogeneous reacting turbulent flow
,”
Chem. Eng. Commun.
109
(
1
),
19
29
(
1991
).
19.
R. W.
Bilger
, “
Conditional moment closure for turbulent reacting flow
,”
Phys. Fluids A
5
(
2
),
436
444
(
1993
).
20.
R. O.
Fox
,
Computational Models for Turbulent Reacting Flows
(
Cambridge University Press
,
Cambridge, UK
,
2003
).
21.
K.
Tsai
and
R. O.
Fox
, “
Modeling multiple reactive scalar mixing with the generalized IEM model
,”
Phys. Fluids
7
,
2820
2830
(
1995
).
22.
H.
Zhang
and
E.
Mastorakos
, “
Prediction of global extinction conditions and dynamics in swirling non-premixed flames using LES/CMC modelling
,”
Flow, Turbul. Combust.
96
,
863
889
(
2016
).
23.
A. D.
Ilgun
,
A.
Passalacqua
, and
R. O.
Fox
, “
Application of quadrature-based moment methods to the conditional moment closure
,”
Proc. Combust. Inst.
38
, (published online, 2020).
24.
A. D.
Ilgun
,
A.
Passalacqua
, and
R. O.
Fox
, “
A quadrature-based conditional moment closure for mixing-sensitive reactions
,”
Chem. Eng. Sci.
226
,
115831
(
2020
).
25.
A. D.
Ilgun
,
A.
Passalacqua
, and
R. O.
Fox
, “
Solution of the first-order conditional moment closure for multiphase reacting flows using quadrature-based moment methods
,”
Chem. Eng. J.
405
,
127020
(
2020
).
26.
A.
Passalacqua
,
F.
Laurent
, and
R. O.
Fox
, “
A second-order realizable scheme for moment advection on unstructured grids
,”
Comput. Phys. Commun.
248
,
106993
(
2020
).
27.
S. B.
Pope
, “
A Monte Carlo method for the PDF equations of turbulent reactive flow
,”
Combust. Sci. Technol.
25
(
5-6
),
159
174
(
1981
).
28.
P.
Donde
,
H.
Koo
, and
V.
Raman
, “
A multivariate quadrature based moment method for LES based modeling of supersonic combustion
,”
J. Comput. Phys.
231
(
17
),
5805
5821
(
2012
).
29.
F.
Gao
and
E. E.
O’Brien
, “
A large-eddy simulation scheme for turbulent reacting flows
,”
Phys. Fluids A
5
,
1282
(
1993
).
30.
H.
Pitsch
, “
Large-eddy simulation of turbulent combustion
,”
Annu. Rev. Fluid Mech.
38
(
1
),
453
482
(
2006
).
31.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
32.
A. Y.
Klimenko
and
R. W.
Bilger
, “
Conditional moment closure for turbulent combustion
,”
Prog. Energy Combust. Sci.
25
,
595
687
(
1999
).
33.
R. O.
Fox
, “
The Fokker–Planck closure for turbulent molecular mixing: Passive scalars
,”
Phys. Fluids A
4
(
6
),
1230
1244
(
1992
).
34.
R. O.
Fox
, “
Improved Fokker–Planck model for the joint scalar, scalar gradient PDF
,”
Phys. Fluids
6
(
1
),
334
348
(
1994
).
35.
E.
Madadi-Kandjani
,
R. O.
Fox
, and
A.
Passalacqua
, “
Application of the Fokker-Planck molecular mixing model to turbulent scalar mixing using moment methods
,”
Phys. Fluids
29
(
6
),
065109
(
2017
).
36.
D. L.
Marchisio
and
R. O.
Fox
,
Computational Models for Polydisperse Particulate and Multiphase Systems
(
Cambridge University Press
,
2013
).
37.
J. C.
Wheeler
, “
Modified moments and Gaussian quadratures
,”
Rocky Mt. J. Math.
4
,
287
296
(
1974
).
38.
A.
Kronenburg
and
R. W.
Bilger
, “
Modelling of differential diffusion effects in nonpremixed nonreacting turbulent flow
,”
Phys. Fluids
9
(
5
),
1435
1447
(
1997
).
39.
C.
Heye
,
V.
Raman
, and
A. R.
Masri
, “
Influence of spray/combustion interactions on auto-ignition of methanol spray flames
,”
Proc. Combust. Inst.
35
(
2
),
1639
1648
(
2015
).
40.
É.
Alméras
,
O.
Masbernat
,
F.
Risso
, and
R. O.
Fox
, “
Fluctuations in inertial dense homogeneous suspensions
,”
Phys. Rev. Fluids
4
(
10
),
102301
(
2019
).
41.
A.
Cartellier
and
N.
Rivière
, “
Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particle Reynolds numbers
,”
Phys. Fluids
13
(
8
),
2165
2181
(
2001
).
42.
D. L.
Koch
, “
Hydrodynamic diffusion in dilute sedimenting suspensions at moderate Reynolds numbers
,”
Phys. Fluids A
5
,
1141
(
1993
).
43.
M.
Mizukami
,
R. N.
Parthasarathy
, and
G. M.
Faeth
, “
Particle-generated turbulence in homogeneous dilute dispersed flows
,”
Int. J. Multiphase Flow
18
,
397
(
1992
).
44.
R. N.
Parthasarathy
and
G. M.
Faeth
, “
Turbulence modulation in homogeneous dilute particle-laden flows
,”
J. Fluid Mech.
220
,
485
(
1990
).
45.
V.
Tavanashad
,
A.
Passalacqua
,
R. O.
Fox
, and
S.
Subramaniam
, “
Effect of density ratio on velocity fluctuations in dispersed multiphase flow from simulations of finite-size particles
,”
Acta Mech.
230
(
2
),
469
484
(
2019
).
46.
M.
Mehrabadi
,
S.
Tenneti
,
R.
Garg
, and
S.
Subramaniam
, “
Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas-solid flow: Fixed particle assemblies and freely evolving suspensions
,”
J. Fluid Mech.
770
,
210
246
(
2015
).
47.
B.
Sun
,
S.
Tenneti
,
S.
Subramaniam
, and
D. L.
Koch
, “
Pseudo-turbulent heat flux and average gas-phase conduction during gas-solid heat transfer: Flow past random fixed particle assemblies
,”
J. Fluid Mech.
798
,
299
349
(
2016
).
48.
C.
Peng
,
B.
Kong
,
J.
Zhou
,
B.
Sun
,
A.
Passalacqua
,
S.
Subramaniam
, and
R. O.
Fox
, “
Implementation of pseudo-turbulence closures in an Eulerian–Eulerian two-fluid model for non-isothermal gas–solid flow
,”
Chem. Eng. Sci.
207
,
663
671
(
2019
).
49.
G. S.
Shallcross
,
R. O.
Fox
, and
J.
Capecelatro
, “
A volume-filtered description of compressible particle-laden flows
,”
Int. J. Multiphase Flow
122
,
103138
(
2020
).
50.
B.
Wang
,
A.
Kronenburg
, and
O. T.
Stein
, “
A new perspective on modelling passive scalar conditional mixing statistics in turbulent spray flames
,”
Combust. Flame
208
,
376
387
(
2019
).
51.
S.
Yao
,
B.
Wang
,
A.
Kronenburg
, and
O. T.
Stein
, “
Conditional scalar dissipation rate modeling for turbulent spray flames using artificial neural networks
,”
Proc. Combust. Inst.
(published online, 2020).
52.
S. T.
Smith
,
R. O.
Fox
, and
V.
Raman
, “
A quadrature closure for the reaction-source term in conditional-moment closure
,”
Proc. Combust. Inst.
31
(
1
),
1675
1682
(
2007
).
53.
W.
Gautschi
, “
Orthogonal polynomials (in Matlab)
,”
J. Comput. Appl. Math.
178
(
1–2
),
215
234
(
2005
).
54.
C.
Yuan
and
R. O.
Fox
, “
Conditional quadrature method of moments for kinetic equations
,”
J. Comput. Phys.
230
(
22
),
8216
8246
(
2011
).
55.
T. T.
Nguyen
,
F.
Laurent
,
R. O.
Fox
, and
M.
Massot
, “
Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes
,”
J. Comput. Phys.
325
,
129
156
(
2016
).
56.
R. O.
Fox
, “
The Lagrangian spectral relaxation model for differential diffusion in homogeneous turbulence
,”
Phys. Fluids
11
(
6
),
1550
1571
(
1999
).
57.
J.
Kim
,
N.
Kim
, and
Y.
Kim
, “
Multi-environment PDF modeling for turbulent piloted premixed jet flames
,”
Proc. Combust. Inst.
37
(
2
),
2573
2581
(
2019
).
58.
Q.
Tang
,
W.
Zhao
,
M.
Bockelie
, and
R. O.
Fox
, “
Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics
,”
Combust. Theory Modell.
11
(
6
),
889
907
(
2007
).
59.
D.
Denker
,
A.
Attili
,
M.
Gauding
,
K.
Niemietz
,
M.
Bode
, and
H.
Pitsch
, “
A new modeling approach for mixture fraction statistics based on dissipation elements
,”
Proc. Combust. Inst.
(
published online, 2020
).
60.
J. C.
Cheng
and
R. O.
Fox
, “
Kinetic modeling of nanoprecipitation using CFD coupled with a population balance
,”
Ind. Eng. Chem. Res.
49
(
21
),
10651
10662
(
2010
).
You do not currently have access to this content.