Several tiny insects have peculiar porous wings composed of many bristles and perform an interesting passive flight known as parachuting. Despite numerous studies on the freefall of objects such as disks, the aerodynamic principles of the effects of a bristled configuration on the parachuting motion under external disturbances remain unexplored. Here, we experimentally investigate freely falling bristled disks over a wide range of Reynolds numbers by changing the number of bristles and the initial orientation angle and compare their kinematics with those of a full circular disk with no bristles. Given the same diameter and moment of inertia, bristled disks with a smaller area have a steady-state flow field similar to that of a circular disk by virtue of the presence of a fully formed virtual fluid barrier at low-Reynolds numbers. However, in the initial transient phase after release, the bristled disks show different damped oscillatory motions from a circular disk. Regardless of their initial orientation angle, the lateral and angular deviations of the bristled disks are smaller than those of the circular disk, producing a more stable freefall. This trend is also observed even for higher Reynolds numbers, where the bristled wings are known to be ineffective from the perspective of aerodynamic performance. By considering the vorticity fields around the disk, we suggest two vortex-related mechanisms that account for the stable falling of the bristled disk, namely, the formation of more symmetric vortex structures and the location of vortex cores closer to the disk center.

1.
P. J.
George
and
J. T.
Huber
, “
A new genus of fossil Mymaridae (Hymenoptera) from Cretaceous amber and key to Cretaceous mymarid genera
,”
Zookeys
130
,
461
472
(
2011
).
2.
J.
Huber
and
J.
Noyes
, “
A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods
,”
J. Hymenopt. Res.
32
,
17
44
(
2013
).
3.
S.
Sunada
,
H.
Takashima
,
T.
Hattori
,
K.
Yasuda
, and
K.
Kawachi
, “
Fluid-dynamic characteristics of a bristled wing
,”
J. Exp. Biol.
205
,
2737
2744
(
2002
), see http://jeb.biologists.org/content/205/17/2737.
4.
E.
Barta
and
D.
Weihs
, “
Creeping flow around a finite row of slender bodies in close proximity
,”
J. Fluid Mech.
551
,
1
17
(
2006
).
5.
D.
Weihs
and
E.
Barta
, “
Comb wings for flapping flight at extremely low Reynolds numbers
,”
AIAA J.
46
,
285
288
(
2008
).
6.
G.
Davidi
and
D.
Weihs
, “
Flow around a comb wing in low-Reynolds-number flow
,”
AIAA J.
50
,
249
253
(
2012
).
7.
T.
Weis-Fogh
, “
Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production
,”
J. Exp. Biol.
59
,
169
230
(
1973
), see https://jeb.biologists.org/content/59/1/169.
8.
L. A.
Miller
and
C. S.
Peskin
, “
When vortices stick: An aerodynamic transition in tiny insect flight
,”
J. Exp. Biol.
207
,
3073
3088
(
2004
).
9.
J. H.
Wu
and
M.
Sun
, “
Unsteady aerodynamic forces of a flapping wing
,”
J. Exp. Biol.
207
,
1137
1150
(
2004
).
10.
A.
Santhanakrishnan
,
A. K.
Robinson
,
S.
Jones
,
A. A.
Low
,
S.
Gadi
,
T. L.
Hedrick
, and
L. A.
Miller
, “
Clap and fling mechanism with interacting porous wings in tiny insect flight
,”
J. Exp. Biol.
217
,
3898
3909
(
2014
).
11.
S. K.
Jones
,
Y. J. J.
Yun
,
T. L.
Hedrick
,
B. E.
Griffith
, and
L. A.
Miller
, “
Bristles reduce the force required to ‘fling’ wings apart in the smallest insects
,”
J. Exp. Biol.
219
,
3759
3772
(
2016
).
12.
V.
Kasoju
,
C.
Terrill
,
M.
Ford
, and
A.
Santhanakrishnan
, “
Leaky flow through simplified physical models of bristled wings of tiny insects during clap and fling
,”
Fluids
3
,
44
(
2018
).
13.
S. H.
Lee
and
D.
Kim
, “
Aerodynamics of a translating comb-like plate inspired by a fairyfly wing
,”
Phys. Fluids
29
,
081902
(
2017
).
14.
S. H.
Lee
,
M.
Lahooti
, and
D.
Kim
, “
Aerodynamic characteristics of unsteady gap flow in a bristled wing
,”
Phys. Fluids
30
,
071901
(
2018
).
15.
S. H.
Lee
,
M.
Lee
, and
D.
Kim
, “
Optimal configuration of a two-dimensional bristled wing
,”
J. Fluid Mech.
888
,
A23
(
2020
).
16.
R. M.
Alexander
,
Principles of Animal Locomotion
(
Princeton University Press
,
2003
).
17.
P. C.
Fernandes
,
F.
Risso
,
P.
Ern
, and
J.
Magnaudet
, “
Oscillatory motion and wake instability of freely rising axisymmetric bodies
,”
J. Fluid Mech.
573
,
479
502
(
2007
).
18.
A. R.
Shenoy
and
C.
Kleinstreuer
, “
Influence of aspect ratio on the dynamics of a freely moving circular disk
,”
J. Fluid Mech.
653
,
463
487
(
2010
).
19.
F.
Auguste
,
J.
Magnaudet
, and
D.
Fabre
, “
Falling styles of disks
,”
J. Fluid Mech.
719
,
388
405
(
2013
).
20.
H.
Zhong
,
C.
Lee
,
Z.
Su
,
S.
Chen
,
M.
Zhou
, and
J.
Wu
, “
Experimental investigation of freely falling thin disks. Part 1. The flow structures and Reynolds number effects on the zigzag motion
,”
J. Fluid Mech.
716
,
228
250
(
2013
).
21.
C.
Lee
,
Z.
Su
,
H.
Zhong
,
S.
Chen
,
M.
Zhou
, and
J.
Wu
, “
Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral
,”
J. Fluid Mech.
732
,
77
104
(
2013
).
22.
E.
Limacher
and
D. E.
Rival
, “
On the distribution of leading-edge vortex circulation in samara-like flight
,”
J. Fluid Mech.
776
,
316
333
(
2015
).
23.
Y.
Wang
,
C.
Shu
,
C. J.
Teo
, and
L. M.
Yang
, “
Numerical study on the freely falling plate: Effects of density ratio and thickness-to-length ratio
,”
Phys. Fluids
28
,
103603
(
2016
).
24.
W.
Zhou
,
M.
Chrust
, and
J.
Dušek
, “
Path instabilities of oblate spheroids
,”
J. Fluid Mech.
833
,
445
468
(
2017
).
25.
L. B.
Esteban
,
J.
Shrimpton
, and
B.
Ganapathisubramani
, “
Edge effects on the fluttering characteristics of freely falling planar particles
,”
Phys. Rev. Fluids
3
,
064302
(
2018
).
26.
T.
Kim
,
J.
Chang
, and
D.
Kim
, “
Free-fall dynamics of a pair of rigidly linked disks
,”
Phys. Fluids
30
,
034104
(
2018
).
27.
I.
Lee
and
H.
Choi
, “
Scaling law for the lift force of autorotating falling seeds at terminal velocity
,”
J. Fluid Mech.
835
,
406
(
2018
).
28.
J.
Yang
,
M.
Liu
,
C.
Wang
,
X.
Zhu
, and
A.
Zhang
, “
Numerical study on uniform-shear flow over a circular disk at low Reynolds numbers
,”
Phys. Fluids
30
,
083605
(
2018
).
29.
J.
Rabault
,
R. A.
Fauli
, and
A.
Carlson
, “
Curving to fly: Synthetic adaptation unveils optimal flight performance of whirling fruits
,”
Phys. Rev. Lett.
122
,
024501
(
2019
).
30.
M.
Mercier
,
S.
Wang
,
J.
Péméja
,
P.
Ern
, and
A.
Ardekani
, “
Settling disks in a linearly stratified fluid
,”
J. Fluid Mech.
885
,
A2
(
2020
).
31.
W. W.
Willmarth
,
N. E.
Hawk
, and
R. L.
Harvey
, “
Steady and unsteady motions and wakes of freely falling disks
,”
Phys. Fluids
7
,
197
208
(
1964
).
32.
S. B.
Field
,
M.
Klaus
,
M. G.
Moore
, and
F.
Nori
, “
Chaotic dynamics of falling disks
,”
Nature
388
,
252
(
1997
).
33.
P.
Ern
,
F.
Risso
,
D.
Fabre
, and
J.
Magnaudet
, “
Wake-induced oscillatory paths of bodies freely rising or falling in fluids
,”
Annu. Rev. Fluid Mech.
44
,
97
121
(
2012
).
34.
R. P.
Roger
and
R. G.
Hussey
, “
Stokes drag on a flat annular ring
,”
Phys. Fluids
25
,
915
922
(
1982
).
35.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
1983
), Vol. 1.
36.
M.-U.
Kim
and
J.-U.
Kim
, “
Stokes drag on a circular annulus
,”
J. Phys. Soc. Jpn.
60
,
3679
3691
(
1991
).
37.
J. P.
Tanzosh
and
H. A.
Stone
, “
A general approach for analyzing the arbitrary motion of a circular disk in a Stokes flow
,”
Chem. Eng. Commun.
148
,
333
346
(
1996
).
38.
P.
Vainshtein
,
M.
Shapiro
, and
C.
Gutfinger
, “
Creeping flow past and within a permeable spheroid
,”
Int. J. Multiphase Flow
28
,
1945
1963
(
2002
).
39.
E.
Strong
,
M.
Pezzulla
,
F.
Gallaire
,
P.
Reis
, and
L.
Siconolfi
, “
Hydrodynamic loading of perforated disks in creeping flows
,”
Phys. Rev. Fluids
4
,
084101
(
2019
).
40.
H.-J.
Zhong
and
C.-B.
Lee
, “
The wake of falling disks at low Reynolds numbers
,”
Acta Mech. Sin.
28
,
367
371
(
2012
).
41.
L.
Vincent
,
W. S.
Shambaugh
, and
E.
Kanso
, “
Holes stabilize freely falling coins
,”
J. Fluid Mech.
801
,
250
259
(
2016
).
42.
C.
Cummins
,
M.
Seale
,
A.
Macente
,
D.
Certini
,
E.
Mastropaolo
,
I. M.
Viola
, and
N.
Nakayama
, “
A separated vortex ring underlies the flight of the dandelion
,”
Nature
562
,
414
(
2018
).
43.
T.
Rezaee
and
K.
Sadeghy
, “
Effect of porosity on the settling behavior of a 2D elliptic particle in a narrow vessel: A lattice-Boltzmann simulation
,”
Phys. Fluids
31
,
123301
(
2019
).
44.
G. E.
Stringham
,
D. B.
Simons
, and
H. P.
Guy
,
The Behavior of Large Particles Falling in Quiescent Liquids
(
US Government Printing Office
,
1969
).
45.
H.
Zhong
,
S.
Chen
, and
C.
Lee
, “
Experimental study of freely falling thin disks: Transition from planar zigzag to spiral
,”
Phys. Fluids
23
,
011702
(
2011
).
46.
T. L.
Hedrick
, “
Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems
,”
Bioinspiration Biomimetics
3
,
034001
(
2008
).
47.
F. W.
Roos
and
W. W.
Willmarth
, “
Some experimental results on sphere and disk drag
,”
AIAA J.
9
,
285
291
(
1971
).
48.
L.
Graftieaux
,
M.
Michard
, and
N.
Grosjean
, “
Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows
,”
Meas. Sci. Technol.
12
,
1422
(
2001
).
49.
Y. S.
Baik
,
L. P.
Bernal
,
K.
Granlund
, and
M. V.
Ol
, “
Unsteady force generation and vortex dynamics of pitching and plunging aerofoils
,”
J. Fluid Mech.
709
,
37
(
2012
).
50.
J. C.
Wu
, “
Theory for aerodynamic force and moment in viscous flows
,”
AIAA J.
19
,
432
441
(
1981
).
You do not currently have access to this content.