The ongoing Covid-19 pandemic has focused our attention on airborne droplet transmission. In this study, we simulate the dispersion of cough droplets in a tropical outdoor environment, accounting for the effects of non-volatile components on droplet evaporation. The effects of relative humidity, wind speed, and social distancing on evaporative droplet transport are investigated. Transmission risks are evaluated based on SARS-CoV-2 viral deposition on a person standing 1 m or 2 m away from the cougher. Our results show that the travel distance for a 100 µm droplet can be up to 6.6 m under a wind speed of 2 m/s. This can be further increased under dry conditions. We found that the travel distance of a small droplet is relatively insensitive to relative humidity. For a millimetric droplet, the projected distance can be more than 1 m, even in still air. Significantly greater droplets and viral deposition are found on a body 1 m away from a cougher, compared to 2 m. Despite low inhalation exposure based on a single cough, infection risks may still manifest through successive coughs or higher viral loadings.

1.
Novel Coronavirus—China, World Health Organization (WHO), retrieved 20 June 2020.
2.
S.
Asadi
,
N.
Bouvier
,
A. S.
Wexler
, and
W. D.
Ristenpart
, “
The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?
,”
Aerosol Sci. Technol.
54
,
635
638
(
2020
).
3.
L.
Bourouiba
, “
Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19
,”
JAMA
323
,
1837
1838
(
2020
).
4.
R.
Tellier
,
Y.
Li
,
B. J.
Cowling
, and
J. W.
Tang
, “
Recognition of aerosol transmission of infectious agents: A commentary
,”
BMC Infect. Dis.
19
,
101
(
2019
).
5.
R.
Mittal
,
R.
Ni
, and
J.-H.
Seo
, “
The flow physics of COVID-19
,”
J. Fluid Mech.
894
,
F2-1
F2-14
(
2020
).
6.
Y. G.
Li
,
H.
Qian
,
J.
Hang
,
X. G.
Chen
,
L.
Hong
,
P.
Liang
,
J. S.
Li
,
S. L.
Xiao
,
J. J.
Wei
,
L.
Liu
, and
M.
Kang
, “
Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant
” (published online
2020
).
7.
L.
Morawska
and
J.
Cao
, “
Airborne transmission of SARS-CoV-2: The world should face the reality
,”
Environ. Int.
139
,
105730
(
2020
).
8.
J. P.
Duguid
, “
The size and the duration of air-carriage of respiratory droplets and droplet-nuclei
,”
Epidemiol. Infect.
44
,
471
479
(
1946
).
9.
W. F.
Wells
,
Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections
(
Harvard University Press
,
1955
).
10.
X.
Xie
,
Y.
Li
,
H.
Sun
, and
L.
Liu
, “
Exhaled droplets due to talking and coughing
,”
J. R. Soc., Interface
6
,
S703
S714
(
2009
).
11.
L.
Bourouiba
,
E.
Dehandschoewercker
, and
J. W. M.
Bush
, “
Violent expiratory events: On coughing and sneezing
,”
J. Fluid Mech.
745
,
537
563
(
2014
).
12.
G. A.
Somsen
,
C.
van Rijn
,
S.
Kooij
,
R. A.
Bem
, and
D.
Bonn
, “
Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission
,”
Lancet Respir. Med.
8
,
658
659
(
2020
).
13.
W. F.
Wells
, “
On air-borne infections: Study II. Droplets and droplet nuclei
,”
Am. J. Epidemiol.
20
,
611
618
(
1934
).
14.
T. F.
Booth
,
B.
Kournikakis
,
N.
Bastien
,
J.
Ho
,
D.
Kobasa
,
L.
Stadnyk
,
Y.
Li
,
M.
Spence
,
S.
Paton
,
B.
Henry
,
B.
Mederski
,
D.
White
,
D. E.
Low
,
A.
McGeer
,
A.
Simor
,
M.
Vearncombe
,
J.
Downey
,
F. B.
Jamieson
,
P.
Tang
, and
F.
Plummer
, “
Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units
,”
J. Infect. Dis.
191
,
1472
1477
(
2005
).
15.
X.
Xie
,
Y.
Li
,
A. T. Y.
Chwang
,
P. L.
Ho
, and
W. H.
Seto
, “
How far droplets can move in indoor environments—Revisiting the wells evaporation–falling curve
,”
Indoor Air
17
,
211
225
(
2007
).
16.
N.
van Doremalen
,
T.
Bushmaker
,
D. H.
Morris
,
M. G.
Holbrook
,
A.
Gamble
,
B. N.
Williamson
,
A.
Tamin
,
J. L.
Harcourt
,
N. J.
Thornburg
,
S. I.
Gerber
,
J. O.
Lloyd-Smith
,
E.
de Wit
, and
V. J.
Munster
, “
Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1
,”
N. Engl. J. Med.
382
,
1564
1567
(
2020
).
17.
P. Y.
Chia
,
K. K.
Coleman
,
Y. K.
Tan
,
S. W. X.
Ong
,
M.
Gum
,
S. K.
Lau
,
X. F.
Lim
,
A. S.
Lim
,
S.
Sutjip
,
P. H.
Lee
,
T. T.
Son
,
B. E.
Young
,
D. K.
Milton
,
G. C.
Gray
,
S.
Schuster
,
T.
Barkham
,
P. P.
De
,
S.
Vasoo
,
M.
Chan
,
B. S. P.
Ang
,
B. H.
Tan
,
Y. S.
Leo
,
O. T.
Ng
, and
M. S. Y.
Wong
, “
Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients
,”
Nat. Commun.
11
,
2800
(
2020
).
18.
X.
Li
,
Y.
Shang
,
Y.
Yan
,
L.
Yang
, and
J.
Tu
, “
Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach
,”
Build. Environ.
128
,
68
76
(
2018
).
19.
B.
Blocken
,
F.
Malizia
,
T.
van Druenen
, and
T.
Marchal
, Toward aerodynamically equivalent COVID19 1.5 m social distancing for walking and running, http://www.urbanphysics.net/Social%20Distancing%20v20_White_Paper.pdf, retrieved on 10 June 2020.
20.
T.
Dbouk
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310-1
053310-10
(
2020
).
22.
Y.
Feng
,
T.
Marchal
,
T.
Sperry
, and
H.
Yi
, “
Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study
,”
J. Aerosol Sci.
147
,
105585
(
2020
).
23.
M.-R.
Pendar
and
J. C.
Páscoa
, “
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
,”
Phys. Fluids
32
,
083305-1
083305-18
(
2020
).
24.
B.
Wang
,
H.
Wu
, and
X.-F.
Wan
, “
Transport and fate of human expiratory droplets—A modeling approach
,”
Phys. Fluids
32
,
083307-1
083307-13
(
2020
).
25.
S.
Chaudhuri
,
S.
Basu
,
P.
Kabi
,
V. R.
Unni
, and
A.
Saha
, “
Modeling the role of respiratory droplets in COVID-19 type pandemics
,”
Phys. Fluids
32
,
063309-1
063309-12
(
2020
).
26.
See https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public for World Health Organization, retrieved on 10 June 2020.
27.
Centres for Disease Control (Cdc) 2020, How COVID-19 spreads, available at: https://www.cdc.gov/coronavirus/2019-ncov/prepare/transmission.html, retrieved on 10 June 2020.
28.
See https://www.gov.sg/article/moving-into-phase-2-what-activities-can-resume for activities that can resume, retrieved on 20 June 2020.
29.
J.
Redrow
,
S.
Mao
,
I.
Celik
,
J. A.
Posada
, and
Z.-G.
Feng
, “
Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough
,”
Build. Environ.
46
,
2042
2051
(
2011
).
30.
J. K.
Gupta
,
C.-H.
Lin
, and
Q.
Chen
, “
Flow dynamics and characterization of a cough
,”
Indoor Air
19
,
517
525
(
2009
).
31.
A.
Bulińska
and
Z.
Buliński
, “
A CFD analysis of different human breathing models and its influence on spatial distribution of indoor air parameters
,”
Comput. Assisted Methods Eng. Sci.
22
,
213
227
(
2015
), see https://cames.ippt.pan.pl/index.php/cames/article/view/23.
32.
P. A.
Cundall
and
O. D. L.
Strack
, “
A discrete numerical model for granular assemblies
,”
Geotechnique
29
,
47
65
(
1979
).
33.
S. A.
Morsi
and
A. J.
Alexander
, “
An investigation of particle trajectories in two-phase flow systems
,”
J. Fluid Mech.
55
,
193
208
(
1972
).
34.
J. I.
Partanen
, “
Re-evaluation of the mean activity coefficients of strontium chloride in dilute aqueous solutions from (10 to 60) °C and at 25 °C up to the saturated solution where the molality is 3.520 mol·kg−1
,”
J. Chem. Eng. Data
58
,
2738
2747
(
2013
).
35.
O. C.
Bridgeman
and
E. W.
Aldrich
, “
Vapor pressure tables for water
,”
J. Heat Transfer
86
,
279
286
(
1964
).
36.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops. Part I
,”
Chem. Eng. Prog.
48
,
141
146
(
1952
), see http://dns2.asia.edu.tw/∼ysho/YSHO-English/1000%20CE/PDF/Che%20Eng%20Pro48,%20141.pdf.
37.
S. S.
Sazhin
, “
Advanced models of fuel droplet heating and evaporation
,”
Prog. Energy Combust. Sci.
32
,
162
214
(
2006
).
38.
ANSYS FLUENT theory,
2019
.
39.
M.
Nicas
,
W. W.
Nazaroff
, and
A.
Hubbard
, “
Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens
,”
J. Occup. Environ. Hyg.
2
,
143
154
(
2005
).
40.
A. A.
Borisov
,
B. E.
Gel’fand
,
M. S.
Natanzon
, and
O. M.
Kossov
, “
Droplet breakup regimes and criteria for their existence
,”
J. Eng. Phys.
40
,
44
49
(
1981
).
41.
L.
Morawska
, “
Droplet fate in indoor environments, or can we prevent the spread of infection?
,”
Indoor Air
16
,
335
347
(
2006
).
42.
See http://www.weather.gov.sg/climate-climate-of-singapore/ for Meteorological Service Singapore, retrieved on 10 May 2020.
43.
K. K.-W.
To
,
O. T.-Y.
Tsang
,
C. C.-Y.
Yip
,
K.-H.
Chan
,
T.-C.
Wu
,
J. M.-C.
Chan
,
W.-S.
Leung
,
T. S.-H.
Chik
,
C. Y.-C.
Choi
,
D. H.
Kandamby
,
D. C.
Lung
,
A. R.
Tam
,
R. W.-S.
Poon
,
A. Y.-F.
Fung
,
I. F.-N.
Hung
,
V. C.-C.
Cheng
,
J. F.-W.
Chan
, and
K.-Y.
Yuen
, “
Consistent detection of 2019 novel coronavirus in saliva
,”
Clin. Infect. Dis.
71
,
841
843
(
2020
).
44.
S. H.
Smith
,
G. A.
Somsen
,
C.
van Rijn
,
S.
Kooij
,
L.
vander Hoek
,
R. A.
Bem
, and
D.
Bonn
, “
Probability of aerosol transmission of SARS-CoV-2
,” (published online
2020
).
45.
M. M.
Arons
,
K. M.
Hatfield
,
S. C.
Reddy
,
A.
Kimball
,
A.
James
,
J. R.
Jacobs
,
J.
Taylor
,
K.
Spicer
,
A. C.
Bardossy
,
L. P.
Oakley
,
S.
Tanwar
,
J. W.
Dyal
,
J.
Harney
,
Z.
Chisty
,
J. M.
Bell
,
M.
Methner
,
P.
Paul
,
C. M.
Carlson
,
H. P.
McLaughlin
,
N.
Thornburg
,
S.
Tong
,
A.
Tamin
,
Y.
Tao
,
A.
Uehara
,
J.
Harcourt
,
S.
Clark
,
C.
Brostrom-Smith
,
L. C.
Page
,
M.
Kay
,
J.
Lewis
,
P.
Montgomery
,
N. D.
Stone
,
T. A.
Clark
,
M. A.
Honein
,
J. S.
Duchin
, and
J. A.
Jernigan
, “
Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility
,”
N. Engl. J. Med.
382
,
2081
2090
(
2020
).
46.
F.
Yu
,
L.
Yan
,
N.
Wang
,
S.
Yang
,
L.
Wang
,
Y.
Tang
,
G.
Gao
,
S.
Wang
,
C.
Ma
,
R.
Xie
,
F.
Wang
,
C.
Tan
,
L.
Zhu
,
Y.
Guo
, and
F.
Zhang
, “
Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients
,”
Clin. Infect. Dis.
71
,
793
798
(
2020
).
47.
N. R.
Jones
,
Z. U.
Qureshi
,
R. J.
Temple
,
J. P. J.
Larwood
,
T.
Greenhalgh
, and
L.
Bourouiba
, “
Two metres or one: What is the evidence for physical distancing in COVID-19?
,”
BMJ
370
,
m3223
(
2020
).
48.
Y.
Wang
,
H.
Tian
,
L.
Zhang
,
M.
Zhang
,
D.
Guo
,
W.
Wu
,
X.
Zhang
,
G. L.
Kan
,
L.
Jia
,
D.
Huo
,
B.
Liu
,
X.
Wang
,
Y.
Sun
,
Q.
Wang
,
P.
Yang
, and
C. R.
MacIntyre
, “
Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: A cohort study in Beijing, China
,”
BMJ Global Health
5
,
e002794
(
2020
).
You do not currently have access to this content.