Just 11 weeks after the confirmation of first infection, one team had already discovered and published [D. Wrapp et al., “Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation,” Science 367(6483), 1260–1263 (2020)] in exquisite detail about the new coronavirus, along with how it differs from previous viruses. We call the virus particle causing the COVID-19 disease SARS-CoV-2, a spherical capsid covered with spikes termed peplomers. Since the virus is not motile, it relies on its own random thermal motion, specifically the rotational component of this thermal motion, to align its peplomers with targets. The governing transport property for the virus to attack successfully is thus the rotational diffusivity. Too little rotational diffusivity and too few alignments are produced to properly infect. Too much, and the alignment intervals will be too short to properly infect, and the peplomer is wasted. In this paper, we calculate the rotational diffusivity along with the complex viscosity of four classes of virus particles of ascending geometric complexity: tobacco mosaic, gemini, adeno, and corona. The gemini and adeno viruses share icosahedral bead arrangements, and for the corona virus, we use polyhedral solutions to the Thomson problem to arrange its peplomers. We employ general rigid bead–rod theory to calculate complex viscosities and rotational diffusivities, from first principles, of the virus suspensions. We find that our ab initio calculations agree with the observed complex viscosity of the tobacco mosaic virus suspension. From our analysis of the gemini virus suspension, we learn that the fine detail of the virus structure governs its rotational diffusivity. We find the characteristic time for the adenovirus from general rigid bead–rod theory. Finally, from our analysis of the coronavirus suspension, we learn that its rotational diffusivity descends monotonically with its number of peplomers.

1.
D.
Wrapp
,
N.
Wang
,
K. S.
Corbett
,
J. A.
Goldsmith
,
C.-L.
Hsieh
,
O.
Abiona
,
B. S.
Graham
, and
J. S.
McLellan
, “
Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
,”
Science
367
(
6483
),
1260
1263
(
2020
).
2.
R.
Yan
,
Y.
Zhang
,
Y.
Li
,
L.
Xia
,
Y.
Guo
, and
Q.
Zhou
, “
Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
,”
Science
367
(
6485
),
1444
1448
(
2020
).
3.
T.
Dbouk
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
(
5
),
053310
(
2020
).
4.
R.
Bhardwaj
and
A.
Agrawal
, “
Likelihood of survival of coronavirus in a respiratory droplet deposited on a solid surface
,”
Phys. Fluids
32
(
6
),
061704
(
2020
).
5.
S.
Verma
,
M.
Dhanak
, and
J.
Frankenfield
, “
Visualizing the effectiveness of face masks in obstructing respiratory jets
,”
Phys. Fluids
32
(
6
),
061708
(
2020
).
6.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
(
6
),
063303
(
2020
).
7.
S.
Chaudhuri
,
S.
Basu
,
P.
Kabi
,
V. R.
Unni
, and
A.
Saha
, “
Modeling the role of respiratory droplets in COVID-19 type pandemics
,”
Phys. Fluids
32
(
6
),
063309
(
2020
).
8.
Y.-Y.
Li
,
J.-X.
Wang
, and
X.
Chen
, “
Can a toilet promote virus transmission? From a fluid dynamics perspective
,”
Phys. Fluids
32
(
6
),
065107
(
2020
).
9.
G.
Busco
,
S. R.
Yang
,
J.
Seo
, and
Y. A.
Hassan
, “
Sneezing and asymptomatic virus transmission
,”
Phys. Fluids
32
(
7
),
073309
(
2020
).
10.
R.
Bhardwaj
and
A.
Agrawal
, “
Tailoring surface wettability to reduce chances of infection of COVID-19 by a respiratory droplet and to improve the effectiveness of personal protection equipment
,”
Phys. Fluids
32
(
8
),
081702
(
2020
).
11.
J.-X.
Wang
,
Y.-Y.
Li
,
X.-D.
Liu
, and
X.
Cao
, “
Virus transmission from urinals
,”
Phys. Fluids
32
(
8
),
081703
(
2020
).
12.
P.
Prasanna Simha
and
P. S.
Mohan Rao
, “
Universal trends in human cough airflows at large distances
,”
Phys. Fluids
32
(
8
),
081905
(
2020
).
13.
J.
Plog
,
J.
Wu
,
Y. J.
Dias
,
F.
Mashayek
,
L. F.
Cooper
, and
A. L.
Yarin
, “
Reopening dentistry after COVID-19: Complete suppression of aerosolization in dental procedures by viscoelastic Medusa Gorgo
,”
Phys. Fluids
32
(
8
),
083111
(
2020
).
14.
C. P.
Cummins
,
O. J.
Ajayi
,
F. V.
Mehendale
,
R.
Gabl
, and
I. M.
Viola
, “
The dispersion of spherical droplets in source–sink flows and their relevance to the COVID-19 pandemic
,”
Phys. Fluids
32
(
8
),
083302
(
2020
).
15.
M.-R.
Pendar
and
J. C.
Páscoa
, “
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
,”
Phys. Fluids
32
(
8
),
083305
(
2020
).
16.
B.
Wang
,
H.
Wu
, and
X.-F.
Wan
, “
Transport and fate of human expiratory droplets—A modeling approach
,”
Phys. Fluids
32
(
8
),
083307
(
2020
).
17.
H.
De-Leon
and
F.
Pederiva
, “
Particle modeling of the spreading of coronavirus disease (COVID-19)
,”
Phys. Fluids
32
(
8
),
087113
(
2020
).
18.
S.
Verma
,
M.
Dhanak
, and
J.
Frankenfield
, “
Visualizing droplet dispersal for face shields and masks with exhalation valves
,”
Phys. Fluids
32
(
9
),
091701
(
2020
).
19.
E.
Hossain
,
S.
Bhadra
,
H.
Jain
,
S.
Das
,
A.
Bhattacharya
,
S.
Ghosh
, and
D.
Levine
, “
Recharging and rejuvenation of decontaminated N95 masks
,”
Phys. Fluids
32
(
9
),
093304
(
2020
).
20.
M.
Vadivukkarasan
,
K.
Dhivyaraja
, and
M. V.
Panchagnula
, “
Breakup morphology of expelled respiratory liquid: From the perspective of hydrodynamic instabilities
,”
Phys. Fluids
32
(
9
),
094101
(
2020
).
21.
S. K.
Das
,
J.-E.
Alam
,
S.
Plumari
, and
V.
Greco
, “
Transmission of airborne virus through sneezed and coughed droplets
,”
Phys. Fluids
32
(
9
),
097102
(
2020
).
22.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
John Wiley & Sons, Inc.
,
New York
,
1987
), Vol. 2.
23.
W.
Zhang
,
N. H.
Olson
,
T. S.
Baker
,
L.
Faulkner
,
M.
Agbandje-McKenna
,
M. I.
Boulton
,
J. W.
Davies
, and
R.
McKenna
, “
Structure of the maize streak virus geminate particle
,”
Virology
279
(
2
),
471
477
(
2001
).
24.
D. L. D.
Caspar
and
A.
Klug
, “
Physical principles in the construction of regular viruses
,” in
Cold Spring Harbor Symposia on Quantitative Biology
(
Cold Spring Harbor Laboratory Press
,
Long Island, NY
,
1962
), Vol. 27, pp.
1
24
.
25.
D. J.
Wales
and
S.
Ulker
, “
Structure and dynamics of spherical crystals characterized for the Thomson problem
,”
Phys. Rev. B
74
(
21
),
212101
(
2006
).
26.
D. J.
Wales
,
H.
McKay
, and
E. L.
Altschuler
, “
Defect motifs for spherical topologies
,”
Phys. Rev. B
79
(
22
),
224115
(
2009
).
27.
O.
Hassager
, “
On the kinetic theory and rheology of multibead models for macromolecules
,” Ph.D. thesis,
Chemical Engineering Department, University of Wisconsin
,
Madison, USA
,
June 18, 1973
.
28.
J. H.
Piette
,
A. J.
Giacomin
, and
M. A.
Kanso
, “
Complex viscosity of helical and doubly helical polymeric liquids from general rigid bead-rod theory
,”
Phys. Fluids
31
(
11
),
111904
(
2019
), Feature article.
29.
M. A.
Kanso
, “
Polymeric liquid behavior in oscillatory shear flow
,” M.S. thesis,
Polymers Research Group, Chemical Engineering Department, Queen’s University
,
Kingston, Canada
,
July 23, 2019
.
30.
O.
Hassager
, “
Kinetic theory and rheology of bead-rod models for macromolecular solutions. II. Linear unsteady flow properties
,”
J. Chem. Phys.
60
(
10
),
4001
4008
(
1974
).
31.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Macromolecular architecture and complex viscosity
,”
Phys. Fluids
31
(
8
),
087107
(
2019
), Editor’s pick.
32.
M. A.
Kanso
and
A. J.
Giacomin
, “
Van Gurp-Palmen relations for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
3
),
033101
(
2020
).
33.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Diblock copolymer architecture and complex viscosity
,”
Int. J. Mod. Phys. B
34
(
14n16
),
2040110
(
2020
).
34.
M. A.
Kanso
and
A. J.
Giacomin
, “
Polymer branching and first normal stress differences in small-amplitude oscillatory shear flow
,”
Can. J. Chem. Eng.
98
(
7
),
1444
1455
(
2020
).
35.
R. B.
Bird
,
O.
Hassager
,
R. C.
Armstrong
, and
C. F.
Curtiss
,
Dynamics of Polymeric Liquids
, 1st ed. (
John Wiley and Sons, Inc.
,
New York
,
1977
), Vol. 2.
36.
M. A.
Kanso
,
L. M.
Jbara
,
A. J.
Giacomin
,
C.
Saengow
, and
P. H.
Gilbert
, “
Order in polymeric liquids under oscillatory shear flow
,”
Phys. Fluids
31
(
3
),
033103
(
2019
).
37.
C. J.
Oliver
,
K. F.
Shortridge
, and
G.
Belyanin
, “
Diffusion coefficient and molecular weight of type 5 adenovirus by photon-correlation spectroscopy
,”
Biochim. Biophys. Acta, Gen. Subj.
437
(
2
),
589
598
(
1976
).
38.
T. A.
King
,
A.
Knox
, and
J. D. G.
McAdam
, “
Translational and rotational diffusion of tobacco mosaic virus from polarized and depolarized light scattering
,”
Biopolymers
12
(
8
),
1917
1926
(
1973
).
39.
D.
Lehner
,
H.
Lindner
, and
O.
Glatter
, “
Determination of the translational and rotational diffusion coefficients of rodlike particles using depolarized dynamic light scattering
,”
Langmuir
16
(
4
),
1689
1695
(
2000
).
40.
A.
Wada
,
N. C.
Ford
, Jr.
, and
F. E.
Karasz
, “
Rotational diffusion of tobacco mosaic virus
,”
J. Chem. Phys.
55
(
4
),
1798
1802
(
1971
).
41.
H. Z.
Cummins
,
F. D.
Carlson
,
T. J.
Herbert
, and
G.
Woods
, “
Translational and rotational diffusion constants of tobacco mosaic virus from Rayleigh linewidths
,”
Biophys. J.
9
(
4
),
518
546
(
1969
).
42.
C. T.
O’Konski
and
A. J.
Haltner
, “
Characterization of the monomer and dimer of tobacco mosaic virus by transient electric birefringence1
,”
J. Am. Chem. Soc.
78
(
15
),
3604
3610
(
1956
).
43.
H.
Boedtker
and
N. S.
Simmons
, “
The preparation and characterization of essentially uniform tobacco mosaic virus particles
,”
J. Am. Chem. Soc.
80
(
10
),
2550
2556
(
1958
).
44.
Q.
Yao
,
P. S.
Masters
, and
R.
Ye
, “
Negatively charged residues in the endodomain are critical for specific assembly of spike protein into murine coronavirus
,”
Virology
442
(
1
),
74
81
(
2013
).
45.
R.
Ye
,
C.
Montalto-Morrison
, and
P. S.
Masters
, “
Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: Distinct roles for charge-rich and cysteine-rich regions of the endodomain
,”
J. Virol.
78
(
18
),
9904
9917
(
2004
).
46.
M. A.
Tortorici
and
D.
Veesler
, “
Structural insights into coronavirus entry
,”
Adv. Virus Res.
105
,
93
116
(
2019
).
47.
N. R.
Eddy
and
J. N.
Onuchic
, “
Rotation-activated and cooperative zipping characterize class I viral fusion protein dynamics
,”
Biophys. J.
114
(
8
),
1878
1888
(
2018
).
48.
W. E.
Stewart
and
J. P.
Sørensen
, “
Hydrodynamic interaction effects in rigid dumbbell suspensions. II. Computations for steady shear flow
,”
Trans. Soc. Rheol.
16
(
1
),
1
13
(
1972
).
49.
J. H.
Piette
,
L. M.
Jbara
,
C.
Saengow
, and
A. J.
Giacomin
, “
Exact coefficients for rigid dumbbell suspensions for steady shear flow material function expansions
,”
Phys. Fluids
31
(
2
),
021212
(
2019
).
50.
L. G.
Leal
and
E. J.
Hinch
, “
The rheology of a suspension of nearly spherical particles subject to Brownian rotations
,”
J. Fluid Mech.
55
(
4
),
745
765
(
1972
).
51.
SolidWorks (Version 2019 sp4),
Dassault Systèmes SolidWorks Corporation
,
Waltham, MA
,
2019
.
52.
R. B.
Bird
and
A. J.
Giacomin
, “
Who conceived the ‘complex viscosity’?
,”
Rheol. Acta
51
(
6
),
481
486
(
2012
).
53.
A. J.
Giacomin
and
R. B.
Bird
, “
Erratum: Official nomenclature of The Society of Rheology: −η″
,”
J. Rheol.
55
(
4
),
921
923
(
2011
).
54.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
, 3rd ed. (
John Wiley & Sons
,
New York
,
1980
).
55.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
New York
,
1977
), Vol. 1.
56.
J.
Atabekov
,
N.
Nikitin
,
M.
Arkhipenko
,
S.
Chirkov
, and
O.
Karpova
, “
Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles
,”
J. Gen. Virol.
92
(
2
),
453
456
(
2011
).
57.
N.
Nemoto
,
J. L.
Schrag
,
J. D.
Ferry
, and
R. W.
Fulton
, “
Infinite-dilution viscoelastic properties of tobacco mosaic virus
,”
Biopolymers
14
(
2
),
409
417
(
1975
).
58.
R. W.
Horne
,
S.
Brenner
,
A. P.
Waterson
, and
P.
Wildy
, “
The icosahedral form of an adenovirus
,”
J. Mol. Biol.
1
,
84
86
(
1959
).
59.
L.
Franqueville
,
P.
Henning
,
M.
Magnusson
,
E.
Vigne
,
G.
Schoehn
,
M. E.
Blair-Zajdel
,
N.
Habib
,
L.
Lindholm
,
G. E.
Blair
,
S. S.
Hong
, and
P.
Boulanger
, “
Protein crystals in adenovirus type 5-infected cells: Requirements for intranuclear crystallogenesis, structural and functional analysis
,”
PLoS One
3
(
8
),
e2894
(
2008
).
60.
B. W.
Neuman
,
G.
Kiss
,
A. H.
Kunding
,
D.
Bhella
,
M. F.
Baksh
,
S.
Connelly
,
B.
Droese
,
J. P.
Klaus
,
S.
Makino
,
S. G.
Sawicki
,
S. G.
Siddell
,
D. G.
Stamou
,
I. A.
Wilson
,
P.
Kuhn
, and
M. J.
Buchmeier
A structural analysis of M protein in coronavirus assembly and morphology
,”
J. Struct. Biol.
174
(
1
),
11
22
(
2011
).
61.
R. N.
Kirchdoerfer
,
N.
Wang
,
J.
Pallesen
,
D.
Wrapp
,
H. L.
Turner
,
C. A.
Cottrell
,
K. S.
Corbett
,
B. S.
Graham
,
J. S.
McLellan
, and
A. B.
Ward
, “
Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
,”
Sci. Rep.
8
(
1
),
15701
(
2018
).
62.
T.
Keef
and
R.
Twarock
, “
Affine extensions of the icosahedral group with applications to the three-dimensional organisation of simple viruses
,”
J. Math. Biol.
59
(
3
),
287
313
(
2009
).
63.
W.
Song
,
M.
Gui
,
X.
Wang
, and
Y.
Xiang
, “
Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
,”
PLoS Pathog.
14
(
8
),
1007236
(
2018
).
64.
N.
Zhu
,
D.
Zhang
,
W.
Wang
,
X.
Li
,
B.
Yang
,
J.
Song
,
X.
Zhao
,
B.
Huang
,
W.
Shi
,
R.
Lu
,
P.
Niu
,
F.
Zhan
et al, “
A novel coronavirus from patients with pneumonia in China, 2019
,”
N. Engl. J. Med.
382
(
8
),
727
733
(
2020
).
65.
E. M.
Furst
and
T. M.
Squires
,
Microrheology
(
Oxford University Press
,
Oxford
,
2017
).
66.
X.
Zhu
,
B.
Kundukad
, and
J. R. C.
Van der Maarel
, “
Viscoelasticity of entangled λ-phage DNA solutions
,”
J. Chem. Phys.
129
(
18
),
185103
(
2008
).
67.
J. R.
Van der Maarel
,
Introduction to Biopolymer Physics
(
World Scientific Publishing Company
,
2007
).
68.
C. S.
Goldsmith
,
K. M.
Tatti
,
T. G.
Ksiazek
,
P. E.
Rollin
,
J. A.
Comer
,
W. W.
Lee
,
P. A.
Rota
,
B.
Bankamp
,
W. J.
Bellini
, and
S. R.
Zaki
, “
Ultrastructural characterization of SARS coronavirus
,”
Emerging Infect. Dis.
10
(
2
),
320
326
(
2004
).
You do not currently have access to this content.