Theory and numerical simulations of the Navier–Stokes equations are used to unravel the influence of inertia on the dewetting dynamics of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-similar asymptotic regime with hminτ2/5 as τ → 0, where hmin is the minimum film thickness and τ is the time remaining before rupture. The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a complete parameter-free asymptotic description of inertia-dominated film rupture.

1.
A.
Alizadeh Pahlavan
,
L.
Cueto-Felgueroso
,
A. E.
Hosoi
,
G. H.
McKinley
, and
R.
Juanes
, “
Thin films in partial wetting: Stability, dewetting and coarsening
,”
J. Fluid Mech.
845
,
642
681
(
2018
).
2.
L.
Battezzati
and
A. L.
Greer
, “
The viscosity of liquid metals and alloys
,”
Acta Metall.
37
(
7
),
1791
1802
(
1989
).
3.
R.
Blossey
.
Thin Liquid Films: Dewetting and Polymer Flow
(
Springer Science & Business Media
,
2012
).
4.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
(
2
),
739
(
2009
).
5.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
(
3
),
1131
(
2009
).
6.
P. G.
De Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
(
3
),
827
(
1985
).
7.
T.
DebRoy
,
H. L.
Wei
,
J. S.
Zuback
,
T.
Mukherjee
,
J. W.
Elmer
,
J. O.
Milewski
,
A. M.
Beese
,
A.
Wilson-Heid
,
A.
De
, and
W.
Zhang
, “
Additive manufacturing of metallic components–process, structure and properties
,”
Prog. Mater. Sci.
92
,
112
224
(
2018
).
8.
M. D.
Dickey
, “
Emerging applications of liquid metals featuring surface oxides
,”
ACS Appl. Mater. Interfaces
6
(
21
),
18369
18379
(
2014
).
9.
T. A.
Driscoll
,
N.
Hale
, and
L. N.
Trefethen
, Chebfun guide,
2014
.
10.
V.
Garg
,
P. M.
Kamat
,
C. R.
Anthony
,
S. S.
Thete
, and
O. A.
Basaran
, “
Self-similar rupture of thin films of power-law fluids on a substrate
,”
J. Fluid Mech.
826
,
455
483
(
2017
).
11.
A. G.
González
,
J. A.
Diez
,
Y.
Wu
,
J. D.
Fowlkes
,
P. D.
Rack
, and
L.
Kondic
, “
Instability of liquid Cu films on a SiO2 substrate
,”
Langmuir
29
(
30
),
9378
9387
(
2013
).
12.
A. G.
González
,
J. A.
Diez
, and
M.
Sellier
, “
Inertial and dimensional effects on the instability of a thin film
,”
J. Fluid Mech.
787
,
449
473
(
2016
).
13.
H. C.
Hamaker
, “
The London-van der Waals attraction between spherical particles
,”
Physica
4
(
10
),
1058
1072
(
1937
).
14.
K.
Kargupta
,
A.
Sharma
, and
R.
Khanna
, “
Instability, dynamics, and morphology of thin slipping films
,”
Langmuir
20
(
1
),
244
253
(
2004
).
15.
L.
Kondic
,
A. G.
González
,
J. A.
Diez
,
J. D.
Fowlkes
, and
P.
Rack
, “
Liquid-state dewetting of pulsed-laser-heated nanoscale metal films and other geometries
,”
Annu. Rev. Fluid Mech.
52
,
235
262
(
2019
).
16.
H.
Krishna
,
N.
Shirato
,
C.
Favazza
, and
R.
Kalyanaraman
, “
Energy driven self-organization in nanoscale metallic liquid films
,”
Phys. Chem. Chem. Phys.
11
(
37
),
8136
8143
(
2009
).
17.
T.
Lundgren
and
P.
Koumoutsakos
, “
On the generation of vorticity at a free surface
,”
J. Fluid Mech.
382
,
351
366
(
1999
).
18.
J. T.
McKeown
,
N. A.
Roberts
,
J. D.
Fowlkes
,
Y.
Wu
,
T.
LaGrange
,
B. W.
Reed
,
G. H.
Campbell
, and
P. D.
Rack
, “
Real-time observation of nanosecond liquid-phase assembly of nickel nanoparticles via pulsed-laser heating
,”
Langmuir
28
(
49
),
17168
17175
(
2012
).
19.
D.
Moreno-Boza
,
A.
Martínez-Calvo
, and
A.
Sevilla
, “
Stokes theory of thin-film rupture
,”
Phys. Rev. Fluids
5
(
1
),
014002
(
2020
).
20.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
(
3
),
931
(
1997
).
21.
L.
Rosenhead
,
Laminar Boundary Layers
(
Clarendon Press
,
Oxford
,
1963
).
22.
E.
Ruckenstein
and
R. K.
Jain
, “
Spontaneous rupture of thin liquid films
,”
J. Chem. Soc., Faraday Trans. 2
70
,
132
147
(
1974
).
23.
A.
Vrij
, “
Possible mechanism for the spontaneous rupture of thin, free liquid films
,”
Discuss. Faraday Soc.
42
,
23
33
(
1966
).
24.
B. W.
Zeff
,
B.
Kleber
,
J.
Fineberg
, and
D. P.
Lathrop
, “
Singularity dynamics in curvature collapse and jet eruption on a fluid surface
,”
Nature
403
(
6768
),
401
(
2000
).
25.
W. W.
Zhang
and
J. R.
Lister
, “
Similarity solutions for van der Waals rupture of a thin film on a solid substrate
,”
Phys. Fluids
11
(
9
),
2454
2462
(
1999
).
You do not currently have access to this content.