Droplet-on-demand liquid metal jetting is emerging as a powerful technology for the additive manufacturing of metallic parts. The success of this method hinges on overcoming several technological challenges. The principal one among these challenges is the controlled repeatable ejection of single uniform droplets. Due to the high density and surface tension of liquid metals, the droplet ejection process occurs near the minimal extremes of the printability phase diagram, defined by acceptable ranges for the Weber (We) and Ohnesorge (Oh) numbers. In this work, we experimentally demonstrate the satellite-free ejection of pneumatically actuated molten tin droplets in this extreme corner of printability and use a combination of high-speed video analysis and volume-of-fluid modeling to elucidate the droplet dynamics. While the simulations at low Oh and We can correctly describe several aspects of the breakup process, such as an increasing tail and pinch-point near the nozzle, no single parameter set can completely capture the droplet shape at breakup. Instead, the experimental droplet dynamics appear to include features from both high and low Oh breakup. This disagreement is ascribed to the incomplete description of the droplet ejection process including wetting and exit effects near the nozzle opening and surface effects such as transient cooling and oxide formation.

1.
J. F.
Isaza
and
C.
Aumund-Kopp
, “
Additive manufacturing with metal powders: Design for manufacture evolves into design for function
,”
Powder Metall. Rev.
3
(
2
),
41
51
(
2014
).
2.
D.
Herzog
,
V.
Seyda
,
E.
Wycisk
, and
C.
Emmelmann
, “
Additive manufacturing of metals
,”
Acta Mater.
117
,
371
392
(
2016
).
3.
R. E.
Laureijs
,
J. B.
Roca
,
S. P.
Narra
,
C.
Montgomery
,
J. L.
Beuth
, and
E. R. H.
Fuchs
, “
Metal additive manufacturing: Cost competitive beyond low volumes
,”
J. Manuf. Sci. Eng.
139
(
8
),
081010
(
2017
).
4.
A. A.
Martin
 et al., “
Dynamics of pore formation during laser powder bed fusion additive manufacturing
,”
Nat. Commun.
10
(
1
),
1987
(
2019
).
5.
J. P.
Kruth
,
P.
Mercelis
,
J.
Van Vaerenbergh
,
L.
Froyen
, and
M.
Rombouts
, “
Binding mechanisms in selective laser sintering and selective laser melting
,”
Rapid Prototyping J.
11
(
1
),
26
36
(
2005
).
6.
I.
Gibson
,
D.
Rosen
, and
B.
Stucker
, “
Directed energy deposition processes
,” in
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, edited by
I.
Gibson
,
D.
Rosen
, and
B.
Stucker
(
Springer New York
,
New York, NY
,
2015
), pp.
245
268
.
7.
Y.
Bai
and
C. B.
Williams
, “
An exploration of binder jetting of copper
,”
Rapid Prototyping J.
21
(
2
),
177
185
(
2015
).
8.
L.
Wu
, “
Method and system for additive manufacturing of complex metal part by sheet lamination
,” U.S. patent 20180207924A1 (
26 July 2018
).
9.
C.
Lieberwirth
,
A.
Harder
, and
H.
Seitz
, “
Extrusion based additive manufacturing of metal parts
,”
J. Mech. Eng. Autom.
7
(
2
),
79
83
(
2017
).
10.
M.
Annoni
,
H.
Giberti
, and
M.
Strano
, “
Feasibility study of an extrusion-based direct metal additive manufacturing technique
,”
Procedia Manuf.
5
,
916
927
(
2016
).
11.
S. T. S.
Tein
 et al., “
Flight trajectory analysis of CuSn-droplets generated by laser drop on demand jetting, using stereoscopic high-speed imaging
,”
Opt. Express
26
(
8
),
84
90
(
2018
).
12.
H.
Zuo
,
H.
Li
,
L.
Qi
, and
S.
Zhong
, “
Influence of interfacial bonding between metal droplets on tensile properties of 7075 aluminum billets by additive manufacturing technique
,”
J. Mater. Sci. Technol.
32
(
5
),
485
488
(
2016
).
13.
I. H.
Karampelas
 et al., “
Drop-on-demand 3D metal printing
,” in
Informatics, Electronics, and Microsystems: TechConnect Briefs
(
TechConnect
,
2017
), pp.
153
155
, available at https://briefs.techconnect.org/papers/drop-on-demand-3d-metal-printing.
14.
D.
Zhang
,
L.
Qi
,
J.
Luo
,
H.
Yi
,
X.
Hou
, and
H.
Li
, “
Geometry control of closed contour forming in uniform micro metal droplet deposition manufacturing
,”
J. Mater. Process. Technol.
243
,
474
480
(
2017
).
15.
S.-Y.
Zhong
,
L.-H.
Qi
,
J.
Luo
,
H.-S.
Zuo
,
X.-H.
Hou
, and
H.-J.
Li
, “
Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology
,”
J. Mater. Process. Technol.
214
(
12
),
3089
3097
(
2014
).
16.
B.
Himmel
,
D.
Rumschoettel
, and
W.
Volk
, “
Tensile properties of aluminium 4047A built in droplet-based metal printing
,”
Rapid Prototyping J.
25
(
2
),
427
432
(
2019
).
17.
Z.
Luo
,
X.
Wang
,
L.
Wang
,
D.
Sun
, and
Z.
Li
, “
Drop-on-demand electromagnetic printing of metallic droplets
,”
Mater. Lett.
188
,
184
187
(
2017
).
18.
Y.
Idell
,
N.
Watkins
,
A.
Pascall
,
J.
Jeffries
, and
K.
Blobaum
, “
Microstructural characterization of pure tin produced by the drop-on-demand technique of liquid metal jetting
,”
Metall. Mater. Trans. A
50
(
9
),
4000
4005
(
2019
).
19.
J.
Luo
,
L.-H.
Qi
,
J.-M.
Zhou
,
X.-H.
Hou
, and
H.-J.
Li
, “
Modeling and characterization of metal droplets generation by using a pneumatic drop-on-demand generator
,”
J. Mater. Process. Technol.
212
(
3
),
718
726
(
2012
).
20.
M.
Simonelli
 et al., “
Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting
,”
Addit. Manuf.
30
,
100930
(
2019
).
21.
C.-H.
Wang
,
H.-L.
Tsai
,
Y.-C.
Wu
, and
W.-S.
Hwang
, “
Investigation of molten metal droplet deposition and solidification for 3D printing techniques
,”
J. Micromech. Microeng.
26
(
9
),
095012
(
2016
).
22.
J.
Luo
,
L.
Qi
,
Y.
Tao
,
Q.
Ma
, and
C. W.
Visser
, “
Impact-driven ejection of micro metal droplets on-demand
,”
Int. J. Mach. Tools Manuf.
106
,
67
74
(
2016
).
23.
S.-Y.
Zhong
,
L.-H.
Qi
,
W.
Xiong
,
J.
Luo
, and
Q.-X.
Xu
, “
Research on mechanism of generating aluminum droplets smaller than the nozzle diameter by pneumatic drop-on-demand technology
,”
Int. J. Adv. Des. Manuf. Technol.
93
(
5-8
),
1771
1780
(
2017
).
24.
B.
Derby
, “
Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution
,”
Annu. Rev. Mater. Res.
40
,
395
414
(
2010
).
25.
N.
Reis
and
B.
Derby
, “
Ink jet deposition of ceramic suspensions: Modeling and experiments of droplet formation
,”
MRS Proc.
625
,
117
(
2000
).
26.
J. R.
Castrejón-Pita
,
N. F.
Morrison
,
O. G.
Harlen
,
G. D.
Martin
, and
I. M.
Hutchings
, “
Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode
,”
Phys. Rev. E
83
(
3
),
036306
(
2011
).
27.
B. W.
Jo
,
A.
Lee
,
K. H.
Ahn
, and
S. J.
Lee
, “
Evaluation of jet performance in drop-on-demand (DOD) inkjet printing
,”
Korean J. Chem. Eng.
26
(
2
),
339
348
(
2009
).
28.
D.-Y.
Shin
and
P. J.
Smith
, “
Theoretical investigation of the influence of nozzle diameter variation on the fabrication of thin film transistor liquid crystal display color filters
,”
J. Appl. Phys.
103
(
11
),
114905
(
2008
).
29.
Q.
Xu
and
O. A.
Basaran
, “
Computational analysis of drop-on-demand drop formation
,”
Phys. Fluids
19
(
10
),
102111
(
2007
).
30.
Y.
Liu
and
B.
Derby
, “
Experimental study of the parameters for stable drop-on-demand inkjet performance
,”
Phys. Fluids
31
(
3
),
032004
(
2019
).
31.
B.
He
,
S.
Yang
,
Z.
Qin
,
B.
Wen
, and
C.
Zhang
, “
The roles of wettability and surface tension in droplet formation during inkjet printing
,”
Sci. Rep.
7
(
1
),
11841
(
2017
).
32.
H.
Dong
,
W. W.
Carr
, and
J. F.
Morris
, “
An experimental study of drop-on-demand drop formation
,”
Phys. Fluids
18
(
7
),
072102
(
2006
).
33.
J. E.
Fromm
, “
Numerical calculation of the fluid dynamics of drop-on-demand jets
,”
IBM J. Res. Dev.
28
(
3
),
322
333
(
1984
).
34.
J. Q.
Feng
, “
A general fluid dynamic analysis of drop ejection in drop-on-demand ink jet devices
,”
J. Imaging Sci. Technol.
46
(
5
),
398
408
(
2002
).
35.
E.
Kim
and
J.
Baek
, “
Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model
,”
Phys. Fluids
24
(
8
),
082103
(
2012
).
36.
N.
Reis
,
C.
Ainsley
, and
B.
Derby
, “
Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors
,”
J. Appl. Phys.
97
(
9
),
094903
(
2005
).
37.
D.
Jang
,
D.
Kim
, and
J.
Moon
, “
Influence of fluid physical properties on ink-jet printability
,”
Langmuir
25
(
5
),
2629
2635
(
2009
).
38.
H.-C.
Wu
,
W.-S.
Hwang
, and
H.-J.
Lin
, “
Development of a three-dimensional simulation system for micro-inkjet and its experimental verification
,”
Mater. Sci. Eng., A
373
(
1
),
268
278
(
2004
).
39.
P.
Shin
,
J.
Sung
, and
M. H.
Lee
, “
Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle
,”
Microelectron. Reliab.
51
(
4
),
797
804
(
2011
).
40.
I. H.
Choi
,
Y. K.
Kim
,
S.
Lee
,
S. H.
Lee
, and
J.
Kim
, “
A pneumatic drop-on-demand printing system with an extended printable liquid range
,”
J. Microelectromech. Syst.
24
(
4
),
768
770
(
2015
).
41.
Wolfram Research, Inc.
, Mathematica, Version 12.0,
Champaign, IL
,
2019
.
42.
R.
Scardovelli
and
S.
Zaleski
, “
Direct numerical simulation of free-surface and interfacial flow
,”
Annu. Rev. Fluid Mech.
31
(
1
),
567
603
(
1999
).
43.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
(
2
),
335
354
(
1992
).
44.
E. S.
Elton
 et al., “
Dramatic effect of oxide on measured liquid metal rheology
,”
J. Rheol.
64
(
1
),
119
128
(
2020
).
45.
M. J.
Assael
 et al., “
Reference data for the density and viscosity of liquid copper and liquid tin
,”
J. Phys. Chem. Ref. Data
39
,
033105
(
2010
).
46.
S.
Yamaguchi
,
A.
Ueno
,
Y.
Akiyama
, and
K.
Morishima
, “
Cell patterning through inkjet printing of one cell per droplet
,”
Biofabrication
4
(
4
),
045005
(
2012
).
47.
D. V.
Lyubimov
,
V. V.
Konovalov
,
T. P.
Lyubimova
, and
I.
Egry
, “
Small amplitude shape oscillations of a spherical liquid drop with surface viscosity
,”
J. Fluid Mech.
677
,
204
217
(
2011
).

Supplementary Material

You do not currently have access to this content.