Micro-organisms and artificial microswimmers often move in biological fluids displaying complex rheological behaviors, including viscoelasticity and shear-thinning viscosity. A comprehensive understanding of the effectiveness of different swimming gaits in various types of complex fluids remains elusive. The squirmer model has been commonly used to represent different types of swimmers and probe the effects of different types of complex rheology on locomotion. While many studies focused only on squirmers with surface velocities in the polar direction, a recent study has revealed that a squirmer with swirling motion can swim faster in a viscoelastic fluid than in Newtonian fluids [Binagia et al., J. Fluid Mech. 900, A4, (2020)]. Here, we consider a similar setup but focus on the sole effect due to shear-thinning viscosity. We use asymptotic analysis and numerical simulations to examine how the swirling flow affects the swimming performance of a squirmer in a shear-thinning but inelastic fluid described by the Carreau constitutive equation. Our results show that the swirling flow can either increase or decrease the speed of the squirmer depending on the Carreau number. In contrast to swimming in a viscoelastic fluid, the speed of a swirling squirmer in a shear-thinning fluid does not go beyond the Newtonian value in a wide range of parameters considered. We also elucidate how the coupling of the azimuthal flow with shear-thinning viscosity can produce the rotational motion of a swirling pusher or puller.

1.
L. J.
Fauci
and
R.
Dillon
, “
Biofluidmechanics of reproduction
,”
Annu. Rev. Fluid Mech.
38
,
371
394
(
2006
).
2.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
3.
J. M.
Yeomans
,
D. O.
Pushkin
, and
H.
Shum
, “
An introduction to the hydrodynamics of swimming microorganisms
,”
Eur. Phys. J. Spec. Top.
223
,
1771
1785
(
2014
).
4.
A.
Zöttl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys.: Condens. Matter
28
,
253001
(
2016
).
5.
J.
Zhang
,
E.
Luijten
,
B. A.
Grzybowski
, and
S.
Granick
, “
Active colloids with collective mobility status and research opportunities
,”
Chem. Soc. Rev.
46
,
5551
5569
(
2017
).
6.
W.
Wang
,
X.
Lv
,
J. L.
Moran
,
S.
Duan
, and
C.
Zhou
, “
A practical guide to active colloids: Choosing synthetic model systems for soft matter physics research
,”
Soft Matter
16
,
3846
3868
(
2020
).
7.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
, “
Microrobots for minimally invasive medicine
,”
Annu. Rev. Biomed. Eng.
12
,
55
85
(
2010
).
8.
S.
Sengupta
,
M. E.
Ibele
, and
A.
Sen
, “
Fantastic voyage: Designing self-powered nanorobots
,”
Angew. Chem. Int. Ed.
51
,
8434
8445
(
2012
).
9.
C.
Hu
,
S.
Pané
, and
B. J.
Nelson
, “
Soft micro- and nanorobotics
,”
Annu. Rev. Control Robot. Autonom. Syst.
1
,
53
75
(
2018
).
10.
G. J.
Elfring
and
E.
Lauga
, “
Theory of locomotion through complex fluids
,” in
Complex Fluids in Biological Systems
, edited by
S. E.
Spagnolie
(
Springer
,
New York
,
2015
), pp.
283
317
.
11.
J.
Sznitman
and
P. E.
Arratia
, “
Locomotion through complex fluids: An experimental view
,” in
Complex Fluids in Biological Systems
, edited by
S. E.
Spagnolie
(
Springer
,
New York
,
2015
), pp.
245
281
.
12.
Z.
Wu
,
Y.
Chen
,
D.
Mukasa
,
O. S.
Pak
, and
W.
Gao
, “
Medical micro/nanorobots in complex media
,”
Chem. Soc. Rev.
(published online 2020).
13.
E.
Lauga
, “
Propulsion in a viscoelastic fluid
,”
Phys. Fluids
19
,
083104
(
2007
).
14.
H. C.
Fu
,
C. W.
Wolgemuth
, and
T. R.
Powers
, “
Swimming speeds of filaments in nonlinearly viscoelastic fluids
,”
Phys. Fluids
21
,
033102
(
2009
).
15.
J.
Teran
,
L.
Fauci
, and
M.
Shelley
, “
Viscoelastic fluid response can increase the speed and efficiency of a free swimmer
,”
Phys. Rev. Lett.
104
,
038101
(
2010
).
16.
X. N.
Shen
and
P. E.
Arratia
, “
Undulatory swimming in viscoelastic fluids
,”
Phys. Rev. Lett.
106
,
208101
(
2011
).
17.
B.
Liu
,
T. R.
Powers
, and
K. S.
Breuer
, “
Force-free swimming of a model helical flagellum in viscoelastic fluids
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
19516
19520
(
2011
).
18.
L.
Zhu
,
M.
Do-Quang
,
E.
Lauga
, and
L.
Brandt
, “
Locomotion by tangential deformation in a polymeric fluid
,”
Phys. Rev. E
83
,
011901
(
2011
).
19.
L.
Zhu
,
E.
Lauga
, and
L.
Brandt
, “
Self-propulsion in viscoelastic fluids: Pushers vs pullers
,”
Phys. Fluids
24
,
051902
(
2012
).
20.
O. S.
Pak
,
L.
Zhu
,
L.
Brandt
, and
E.
Lauga
, “
Micropropulsion and microrheology in complex fluids via symmetry breaking
,”
Phys. Fluids
24
,
103102
(
2012
).
21.
S. E.
Spagnolie
,
B.
Liu
, and
T. R.
Powers
, “
Locomotion of helical bodies in viscoelastic fluids: Enhanced swimming at large helical amplitudes
,”
Phys. Rev. Lett.
111
,
068101
(
2013
).
22.
B.
Thomases
and
R. D.
Guy
, “
Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids
,”
Phys. Rev. Lett.
113
,
098102
(
2014
).
23.
B.
Qin
,
A.
Gopinath
,
J.
Yang
,
J. P.
Gollub
, and
P. E.
Arratia
, “
Flagellar kinematics and swimming of algal cells in viscoelastic fluids
,”
Sci. Rep.
5
,
9190
(
2015
).
24.
G.
Li
,
G. H.
McKinley
, and
A. M.
Ardekani
, “
Dynamics of particle migration in channel flow of viscoelastic fluids
,”
J. Fluid Mech.
785
,
486
505
(
2015
).
25.
C.-K.
Tung
,
C.
Lin
,
B.
Harvey
,
A. G.
Fiore
,
F.
Ardon
,
M.
Wu
, and
S. S.
Suarez
, “
Fluid viscoelasticity promotes collective swimming of sperm
,”
Sci. Rep.
7
,
3152
(
2017
).
26.
S.
Sahoo
,
S. P.
Singh
, and
S.
Thakur
, “
Enhanced self-propulsion of a sphere-dimer in viscoelastic fluid
,”
Soft Matter
15
,
2170
2177
(
2019
).
27.
T. D.
Montenegro-Johnson
,
D. J.
Smith
, and
D.
Loghin
, “
Physics of rheologically enhanced propulsion: Different strokes in generalized Stokes
,”
Phys. Fluids
25
,
081903
(
2013
).
28.
J. R.
Vélez-Cordero
and
E.
Lauga
, “
Waving transport and propulsion in a generalized Newtonian fluid
,”
J. Non-Newtonian Fluid Mech.
199
,
37
50
(
2013
).
29.
G.
Li
and
A. M.
Ardekani
, “
Undulatory swimming in non-Newtonian fluids
,”
J. Fluid Mech.
784
,
R4
(
2015
).
30.
C.
Datt
,
L.
Zhu
,
G. J.
Elfring
, and
O. S.
Pak
, “
Squirming through shear-thinning fluids
,”
J. Fluid Mech.
784
,
R1
(
2015
).
31.
D. A.
Gagnon
,
N. C.
Keim
, and
P. E.
Arratia
, “
Undulatory swimming in shear-thinning fluids: Experiments with Caenorhabditis elegans
,”
J. Fluid Mech.
758
,
R3
(
2014
).
32.
D. A.
Gagnon
and
P. E.
Arratia
, “
The cost of swimming in generalized Newtonian fluids: Experiments with C. elegans
,”
J. Fluid Mech.
800
,
753
765
(
2016
).
33.
T. D.
Montenegro-Johnson
, “
Fake μs: A cautionary tail of shear-thinning locomotion
,”
Phys. Rev. Fluids
2
,
081101
(
2017
).
34.
S.
Gómez
,
F. A.
Godínez
,
E.
Lauga
, and
R.
Zenit
, “
Helical propulsion in shear-thinning fluids
,”
J. Fluid Mech.
812
,
R3
(
2017
).
35.
T. J.
Pedley
, “
Spherical squirmers: Models for swimming micro-organisms
,”
IMA J. Appl. Math.
81
,
488
(
2016
).
36.
M. J.
Lighthill
, “
On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers
,”
Commun. Pure Appl. Math.
5
,
109
118
(
1952
).
37.
J. R.
Blake
, “
A spherical envelope approach to ciliary propulsion
,”
J. Fluid Mech.
46
,
199
(
1971
).
38.
K.
Drescher
,
R. E.
Goldstein
, and
I.
Tuval
, “
Fidelity of adaptive phototaxis
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
11171
11176
(
2010
).
39.
T.
Ishikawa
,
M. P.
Simmonds
, and
T. J.
Pedley
, “
Hydrodynamic interaction of two swimming model micro-organisms
,”
J. Fluid Mech.
568
,
119
160
(
2006
).
40.
T.
Ishikawa
and
T. J.
Pedley
, “
Coherent structures in monolayers of swimming particles
,”
Phys. Rev. Lett.
100
,
088103
(
2008
).
41.
G.-J.
Li
,
A.
Karimi
, and
A. M.
Ardekani
, “
Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid
,”
Rheol. Acta
53
,
911
926
(
2014
).
42.
S.
Yazdi
,
A. M.
Ardekani
, and
A.
Borhan
, “
Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid
,”
Phys. Rev. E
90
,
043002
(
2014
).
43.
M.
De Corato
,
F.
Greco
, and
P. L.
Maffettone
, “
Locomotion of a microorganism in weakly viscoelastic liquids
,”
Phys. Rev. E
92
,
053008
(
2015
).
44.
H.
Nganguia
,
K.
Pietrzyk
, and
O. S.
Pak
, “
Swimming efficiency in a shear-thinning fluid
,”
Phys. Rev. E
96
,
062606
(
2017
).
45.
C.
Datt
,
G.
Natale
,
S. G.
Hatzikiriakos
, and
G. J.
Elfring
, “
An active particle in a complex fluid
,”
J. Fluid Mech.
823
,
675
688
(
2017
).
46.
K.
Qi
,
E.
Westphal
,
G.
Gompper
, and
R. G.
Winkler
, “
Enhanced rotational motion of spherical squirmer in polymer solutions
,”
Phys. Rev. Lett.
124
,
068001
(
2020
).
47.
K.
Pietrzyk
,
H.
Nganguia
,
C.
Datt
,
L.
Zhu
,
G. J.
Elfring
, and
O. S.
Pak
, “
Flow around a squirmer in a shear-thinning fluid
,”
J. Non-Newtonian Fluid Mech.
268
,
101
110
(
2019
).
48.
S.
Ghose
and
R.
Adhikari
, “
Irreducible representations of oscillatory and swirling flows in active soft matter
,”
Phys. Rev. Lett.
112
,
118102
(
2014
).
49.
O. S.
Pak
and
E.
Lauga
, “
Generalized squirming motion of a sphere
,”
J. Eng. Math.
88
,
1
28
(
2014
).
50.
B. U.
Felderhof
and
R. B.
Jones
, “
Stokesian swimming of a sphere at low Reynolds number by helical surface distortion
,”
Phys. Fluids
28
,
073601
(
2016
).
51.
T. J.
Pedley
,
D. R.
Brumley
, and
R. E.
Goldstein
, “
Squirmers with swirl: A model for volvox swimming
,”
J. Fluid Mech.
798
,
165
186
(
2016
).
52.
J. P.
Binagia
,
A.
Phoa
,
K. D.
Housiadas
, and
E. S. G.
Shaqfeh
, “
Swimming with swirl in a viscoelastic fluid
,”
J. Fluid Mech.
900
,
A4
(
2020
).
53.
A.
Chwang
and
T. Y.
Wu
, “
A note on the helical movement of micro-organisms
,”
Proc. R. Soc. London, Ser. B
178
,
327
346
(
1971
).
54.
H. A.
Stone
and
A. D. T.
Samuel
, “
Propulsion of microorganisms by surface distortions
,”
Phys. Rev. Lett.
77
,
4102
(
1996
).
55.
E.
Lauga
, “
Locomotion in complex fluids: Integral theorems
,”
Phys. Fluids
26
,
081902
(
2014
).
56.
H.
Masoud
and
H. A.
Stone
, “
The reciprocal theorem in fluid dynamics and transport phenomena
,”
J. Fluid Mech.
879
,
P1
(
2019
).
You do not currently have access to this content.