In a cavity flow with acoustic radiation, self-sustained oscillations are controlled by a continuously or intermittently driven plasma actuator with elongated electrodes in the streamwise direction, which induces spanwise non-uniformity of the incoming boundary layer. To evaluate the control effects, wind tunnel experiments and compressible flow simulations were conducted. As indicated by sound pressure measurements at the fundamental frequency, the sound reduction level afforded by the intermittent control may be higher than that provided by the continuous control, although both have the same power consumption. In particular, the sound reduction was highest at a certain intermittent frequency (i.e., effective frequency) under a constant driving voltage and duty ratio. To clarify the mechanism for the influence of the intermittent frequency on the control effects, the time variation of the incoming boundary layer and cavity flow during the intermittent period was investigated. The oscillations remained weak under the control of the effective intermittent frequency, while the attenuation and amplification of the oscillations were repeated in the actuator-on and actuator-off durations, respectively, under the control of intermittent frequencies lower than the effective frequency. The amplification rate of the oscillations was found to be correlated with the quality factor of the radiated sound without control. The relationship between the effective frequency and characteristic time for this amplification is also discussed in this paper.

1.
J. C.
Bruggeman
,
A.
Hirschberg
,
M. E. H.
van Dongen
,
A. P. J.
Wijnands
, and
J.
Gorter
, “
Self-sustained aero-acoustic pulsations in gas transport systems: Experimental study of the influence of closed side branches
,”
J. Sound Vib.
150
,
371
393
(
1991
).
2.
F.
Mizushima
,
H.
Takakura
,
T.
Kurita
,
C.
Kato
, and
A.
Iida
, “
Experimental investigation of aerodynamic noise generated by a train-car gap
,”
J. Fluid Sci. Technol.
2
,
464
479
(
2007
).
3.
R.
Langtry
and
P.
Spalart
, “
DES investigation of devices for reducing landing-gear cavity noise
,” AIAA Paper No. 2008-13,
2008
.
4.
K.
Karamcheti
, “
Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic surfaces
,” NACA Report No. TN 3487,
1955
.
5.
J.
Rossiter
, “
Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds
,” Aeronautical Research Council Report No. 3438,
1964
.
6.
D.
Rockwell
and
E.
Naudascher
, “
Review-self-sustaining oscillations of flow past cavities
,”
J. Fluids Eng.
100
,
152
165
(
1978
).
7.
C. W.
Rowley
,
T.
Colonius
, and
A. J.
Basu
, “
On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities
,”
J. Fluid Mech.
455
,
315
346
(
2002
).
8.
H.
Yokoyama
and
C.
Kato
, “
Fluid-acoustic interactions in self-sustained oscillations in turbulent cavity flows. I. Fluid-dynamic oscillations
,”
Phys. Fluids
21
,
105103
(
2009
).
9.
Y.
Sun
,
K.
Taira
,
L. N.
Cattafesta
, and
L. S.
Ukeiley
, “
Biglobal instabilities of compressible open-cavity flows
,”
J. Fluid Mech.
826
,
270
301
(
2017
).
10.
C. W.
Rowley
and
D. R.
Williams
, “
Dynamics and control of high-Reynolds-number flow over open cavities
,”
Annu. Rev. Fluid Mech.
38
,
251
276
(
2006
).
11.
L. N.
Cattafesta
,
Q.
Song
,
D. R.
Williams
,
C. W.
Rowley
, and
F. S.
Alvi
, “
Active control of flow-induced cavity oscillations
,”
Prog. Aeronaut. Sci.
44
,
479
502
(
2008
).
12.
C.
Panigrahi
,
A.
Vaidyanathan
, and
M. T.
Nair
, “
Effects of subcavity in supersonic cavity flow
,”
Phys. Fluids
31
,
036101
(
2019
).
13.
R. L.
Sarno
and
M. E.
Franke
, “
Suppression of flow-induced pressure oscillations in cavities
,”
J. Aircr.
31
,
90
96
(
1994
).
14.
H.
Yokoyama
,
R.
Adachi
,
T.
Minato
, and
A.
Iida
, “
Experimental and numerical investigations on control methods of cavity tone by blowing jet in an upstream boundary layer
,”
SAE Int. J. Passeng. Cars Mech. Syst.
10
,
703
711
(
2017
).
15.
K.
Kim
,
M.
Debiasi
,
R.
Schultz
,
A.
Serrani
, and
M.
Samimy
, “
Dynamic compensator for a synthetic-jet-like compression driver actuator in closed-loop cavity flow control
,” AIAA Paper No. 2007-880,
2007
.
16.
Y.
Yokokawa
,
Y.
Fukunishi
, and
S.
Kikuchi
, “
Suppression of aero-acoustic noise by separation control using piezo-actuators
,” AIAA Paper No. 2000-1931,
2000
.
17.
L. N.
Cattafesta
,
S.
Garg
, and
D.
Shukla
, “
Development of piezoelectric actuators for active flow control
,”
AIAA J.
39
,
1562
1568
(
2001
).
18.
M. A.
Kegerise
,
R. H.
Cabell
, and
L. N.
Cattafesta
, “
Real-time feedback control of flow-induced cavity tones—Part 1: Fixed-gain control
,”
J. Sound Vib.
307
,
906
923
(
2007
).
19.
X.
Huang
and
X.
Zhang
, “
Streamwise and spanwise plasma actuators for flow-induced cavity noise control
,”
Phys. Fluids
20
,
037101
(
2008
).
20.
H.
Yokoyama
,
I.
Tanimoto
, and
A.
Iida
, “
Experimental tests and aeroacoustic simulations of the control of cavity tone by plasma actuators
,”
Appl. Sci.
7
,
790
(
2017
).
21.
N.
Webb
and
M.
Samimy
, “
Control of supersonic cavity flow using plasma actuators
,”
AIAA J.
55
,
3346
3355
(
2017
).
22.
J. R.
Roth
,
D. M.
Sherman
, and
S. P.
Wilkinson
, “
Electrohydrodynamic flow control with a glow-discharge surface plasma
,”
AIAA J.
38
,
1166
1172
(
2000
).
23.
E.
Moreau
, “
Airflow control by non-thermal plasma actuators
,”
J. Phys. D: Appl. Phys.
40
,
605
636
(
2007
).
24.
R. E.
Hanson
,
K. M.
Bade
,
B. A.
Belson
,
P.
Lavoie
,
A. M.
Naguib
, and
C. W.
Rowley
, “
Feedback control of slowly-varying transient growth by an array of plasma actuators
,”
Phys. Fluids
26
,
024102
(
2014
).
25.
L. N.
Cattafesta
and
M.
Sheplak
, “
Actuators for active flow control
,”
Annu. Rev. Fluid Mech.
43
,
247
272
(
2011
).
26.
J.
Omidi
and
K.
Mazaheri
, “
Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: Physical parameters
,”
Phys. Fluids
32
,
077107
(
2020
).
27.
B. K.
Mishara
and
P. K.
Panigrahi
, “
Formation and characterization of the vortices generated by a DBD plasma actuator in burst mode
,”
Phys. Fluids
29
,
024104
(
2017
).
28.
M.
Sato
,
K.
Asada
,
T.
Nonomura
,
H.
Aono
,
A.
Yakeno
, and
K.
Fujii
, “
Mechanisms for turbulent separation control using plasma actuator at Reynolds number of 1.6 × 106
,”
Phys. Fluids
31
,
095107
(
2019
).
29.
M.
Sato
,
K.
Okada
,
K.
Asada
,
H.
Aono
,
T.
Nonomura
, and
K.
Fujii
, “
Unified mechanisms for separation control around airfoil using plasma actuator with burst actuation over Reynolds number range of 103–106
,”
Phys. Fluids
32
,
025102
(
2020
).
30.
H.
Yokoyama
,
H.
Odawara
, and
A.
Iida
, “
Effects of freestream turbulence on cavity tone and sound source
,”
Int. J. Aero. Eng.
2016
,
7347106
.
31.
A.
Inasawa
,
C.
Ninomiya
, and
M.
Asai
, “
Suppression of tonal trailing-edge noise from an airfoil using a plasma actuator
,”
AIAA J.
51
,
1695
1702
(
2013
).
32.
J.
Kriegseis
,
B.
Möller
,
S.
Grundmann
, and
C.
Tropea
, “
Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators
,”
J. Electrost.
69
,
302
312
(
2011
).
33.
C. L.
Enloe
,
T. E.
McLaughlin
,
R. D.
VanDyken
,
K. D.
Kachner
,
E. J.
Jumper
, and
T. C.
Corke
, “
Mechanisms and responses of a single dielectric barrier plasma actuator: Plasma morphology
,”
AIAA J.
42
,
589
594
(
2004
).
34.
J. P.
Murphy
,
J.
Kriegseis
, and
P.
Lavoie
, “
Scaling of maximum velocity, body force, and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry
,”
J. Appl. Phys.
113
,
243301
(
2013
).
35.
R. B.
Abernethy
,
R. P.
Benedict
, and
R. B.
Dowdell
, “
ASME measurement uncertainty
,”
J. Fluids Eng.
107
,
161
164
(
1985
).
36.
Y. B.
Suzen
,
P. G.
Huang
,
J. D.
Jacob
, and
D. E.
Ashpis
, “
Numerical simulations of plasma-based flow control applications
,” AIAA Paper No. 2005-4633,
2005
.
37.
I.
Kaneda
,
S.
Sekimoto
,
T.
Nonomura
,
K.
Asada
,
A.
Oyama
, and
K.
Fujii
, “
An effective three-dimensional layout of actuation body force for separation control
,”
Int. J. Aero. Eng.
2012
,
786960
.
38.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
39.
D. P.
Rizzetta
and
M. R.
Visbal
, “
Large-eddy simulation of supersonic cavity flowfields including flow control
,”
AIAA J.
41
,
1452
1462
(
2003
).
40.
C.
Bogey
and
C.
Bailly
, “
Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model
,”
Int. J. Heat Fluid Flow
27
,
603
610
(
2006
).
41.
C.
Bogey
and
C.
Bailly
, “
Turbulence and energy budget in a self-preserving round jet: Direct evaluation using large eddy simulation
,”
J. Fluid Mech.
627
,
129
160
(
2009
).
42.
K.
Matsuura
and
C.
Kato
, “
Large-eddy simulation of compressible transitional flows in a low-pressure turbine cascade
,”
AIAA J.
45
,
442
457
(
2007
).
43.
K. W.
Thompson
, “
Time dependent boundary conditions for hyperbolic systems
,”
J. Comp. Physiol.
68
,
1
24
(
1987
).
44.
T. J.
Poinsot
and
S. K.
Lelef
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comp. Physiol.
101
,
104
129
(
1992
).
45.
J. W.
Kim
and
D. J.
Lee
, “
Generalized characteristic boundary conditions for computational aeroacoustics
,”
AIAA J.
38
,
2040
2049
(
2000
).
46.
J. E. F.
Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc., A
264
,
321
342
(
1968
).
47.
A. S.
Lyrintzis
, “
Surface integral methods in computational aeroacoustics-from the (CFD) near-field to the (acoustic) far-field
,”
Int. J. Aeroacoustics
2
,
95
128
(
2003
).
48.
M. L.
Shur
,
P. R.
Spalart
, and
M. K.
Strelets
, “
Noise prediction for increasingly complex jets. Part I: Methods and tests
,”
Int. J. Aeroacoustics
4
,
213
246
(
2005
).
49.
H.
Yokoyama
,
K.
Terao
,
T.
Suzuki
, and
A.
Iida
, “
A formula for prediction of frequency of tonal sound in cavity flows with acoustic resonance
,” in
Proceedings of the ASME-JSME-KSME Fluids Engineering Conference
,
2011
.
50.
K.
Terao
,
H.
Yokoyama
,
Y.
Ogoe
, and
A.
Iida
, “
Proposition of a new formula for frequency prediction based on generation mechanism of aerodynamic sound in cavity flows
,”
Trans. Jpn. Soc. Mech. Eng., B
77
,
1522
1532
(
2011
), (in Japanese).
51.
D.
Erdem
,
D.
Rockwell
,
P.
Oshkai
, and
M.
Pollack
, “
Flow tones in a pipeline-cavity system: Effect of pipe asymmetry
,”
J. Fluids Struct.
17
,
511
523
(
2003
).
You do not currently have access to this content.