This experimental and numerical study discusses the formation of double vortex breakdown in a swirling flow of two immiscible fluids where new circulation cells evolve in both fluids. The rotating lid drives the steady axisymmetric motion in a sealed vertical cylindrical container whose other walls are stationary. As the rotation intensifies, multiple topological changes occur in the flow. This study explains how two new circulation cells (vortex breakdown bubbles) almost simultaneously develop near the centers of both upper and lower fluids while the flow remains steady and axisymmetric. Such multi-cell flows can help provide fine, gentle, and nonintrusive mixing in chemical and biological reactors.

1.
D. H.
Peckham
and
S. A.
Atkinson
, “
Preliminary results of low speed wind tunnel tests on a Gothic wing of aspect ratio 1.0
,” Technical Report CP-508, TN NO. 254,
Aeronautical Research Council
,
1957
.
2.
V.
Shtern
,
Cellular Flows: Topological Metamorphoses in Fluid Mechanics
(
Cambridge University Press
,
Cambridge
,
2018
).
3.
H. U.
Vogel
, “
Experimentelle ergebnisse über die laminare strömung in einem zylindrischen gehäuse mit darin rotierender scheibe
,” in
Bericht / Max-Planck-Institut für Strömungsforschung
(
MPIStrömungsforschung,
,
Göttigen, Bericht
,
1968
), Vol.
6
.
4.
M. P.
Escudier
, “
Observations of the flow produced in a cylindrical container by a rotating endwall
,”
Exp. Fluids
2
,
189
(
1984
).
5.
Y. A.
Ramazanov
,
V. I.
Kislykh
,
I. P.
Kosyuk
,
N. V.
Bakuleva
, and
V. V.
Shchurikhina
, “
Industrial production of vaccines using embryonic cells in gas-vortex gradient-less bioreactors
,” in
New Aspects of Biotechnology and Medicine
, edited by
A. M.
Egorov
(
Nova Scientific Books
,
New York
,
2007
), pp.
87
91
.
6.
K. Y. S.
Liow
,
G. A.
Thouas
,
B. T.
Tan
,
M. C.
Thompson
, and
K.
Hourigan
, “
Modelling the transport of momentum and oxygen in an aerial-disk driven bioreactor used for animal tissue or cell culture
,”
IFMBE Proc.
23
,
1672
(
2008
).
7.
K. Y. S.
Liow
,
B. T.
Tan
,
G. A.
Thouas
, and
M. C.
Thompson
, “
CFD modeling of the steady-state momentum and oxygen transport in a bioreactor that is driven by an aerial rotating disk
,”
Mod. Phys. Lett. B
23
,
121
(
2009
).
8.
D.
Lo Jacono
,
M.
Nazarinia
, and
M.
Brøns
, “
Experimental vortex breakdown topology in a cylinder with a free surface
,”
Phys. Fluids
21
,
111704
(
2009
).
9.
S.
Fujimoto
and
Y.
Takeda
, “
Topology changes of the interface between two immiscible liquid layers by a rotating lid
,”
Phys. Rev. E
80
,
015304(R)
(
2009
).
10.
J.-C.
Tsai
,
C.-Y.
Tao
,
Y.-C.
Sun
,
C.-Y.
Lai
,
K.-H.
Huang
,
W.-T.
Juan
, and
J.-R.
Huang
, “
Vortex-induced morphology on a two-fluid interface and the transitions
,”
Phys. Rev. E
92
,
031002(R)
(
2015
).
11.
I. V.
Naumov
,
V. G.
Glavny
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Formation of a thin circulation layer in a two-fluid rotating flow
,”
Phys. Rev. Fluids
4
,
054702
(
2019
).
12.
L.
Carrión
,
I. V.
Naumov
,
B. R.
Sharifullin
,
M. A.
Herrada
, and
V. N.
Shtern
, “
Mechanism of disappearance of vortex breakdown in a confined flow
,”
J. Eng. Thermophys.
29
,
49
(
2020
).
13.
I. V.
Naumov
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Vortex breakdown in the lower fluid of two-fluid swirling flow
,”
Phys. Fluids
32
,
014101
(
2020
).
14.
I. V.
Naumov
,
B. R.
Sharifullin
,
M. A.
Tsoy
, and
V. N.
Shtern
, “
Dual vortex breakdown in a two-fluid confined flow
,”
Phys. Fluids
32
,
061706
(
2020
).
15.
I. V.
Naumov
,
M. A.
Herrada
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Slip at the interface of a two-fluid swirling flow
,”
Phys. Fluids
30
,
074101
(
2018
).
16.
I. V.
Naumov
,
V. G.
Glavny
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Multi-cellular pattern of a two-fluid swirling flow in a closed cylinder
,”
J. Phys. Conf. Series
1105
,
012030
(
2018
).
17.
S. J.
Bolaño
and
B.
Vernescu
, “
Derivation of the Navier slip and slip length for viscous flows over a rough boundary
,”
Phys. Fluids
29
,
057103
(
2017
).
18.
D.
Crowdy
, “
Slip length for transverse shear flow over a periodic array of weakly curved menisci
,”
Phys. Fluids
29
,
091702
(
2017
).
19.
S.
Das
,
A.
Bhattacharjee
, and
S.
Chakraborty
, “
Influence of interfacial slip on the suspension rheology of a dilute emulsion of surfactant-laden deformable drops in linear flows
,”
Phys. Fluids
30
,
032005
(
2018
).
20.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge, England
,
1967
).
21.
M. A.
Herrada
and
J. M.
Montanero
, “
A numerical method to study the dynamics of capillary fluid systems
,”
J. Comput. Phys.
306
,
137
147
(
2016
).
22.
H. K.
Moffatt
, “
Viscous and resistive eddies near a sharp corner
,”
J. Fluid Mech.
18
,
1
18
(
1964
).
23.
C. P.
Hills
, “
Eddies induced in cylindrical containers by a rotating end wall
,”
Phys. Fluids
13
,
2279
2286
(
2001
).
24.
U. T.
Bödewadt
, “
Die drehströmung über festem grunde
,”
Z. Angew. Math. Mech.
20
,
241
243
(
1940
).
25.
A.
Spohn
,
M.
Mory
, and
E. J.
Hopfinger
, “
Observations of vortex breakdown in an open cylindrical container with a rotating bottom
,”
Exp. Fluids
14
,
70
77
(
1993
).
26.
M.
Brøns
,
L. K.
Voigt
, and
J. N.
Sørensen
, “
Topology of vortex breakdown bubbles in a cylinder with a rotating bottom and a free surface
,”
J. Fluid Mech.
428
,
133
148
(
2001
).
27.
I. V.
Naumov
,
M. V.
Kashkarova
,
R. F.
Mikkelsen
, and
V. L.
Okulov
, “
The structure of the confined swirling flow under different phase boundary conditions at the fixed end of the cylinder
,”
Thermophys. Aeromech.
27
(
1
),
89
94
(
2020
).
You do not currently have access to this content.