A computational fluid dynamics-discrete element-immersed boundary method (CFD-DEM-IBM method) was developed for Cartesian grid simulation of the hydrodynamics and heat transfer of compressible gas–solid flow, where the interaction of gas and complex geometries was modeled using the IBM. The IBM was first validated by simulating single-phase flow past a circular cylinder at different Reynolds numbers and Mach numbers; it was shown that the drag coefficient, the lift coefficient, the Strouhal number, and the Nusselt number are all in excellent agreement with the data available in the literature. The CFD-DEM-IBM method was then used to study the tube-to-bed heat transfer of compressible gas–solid in a bubbling fluidized bed with an immersed tube. It was found that the profiles of the overall averaged and local distribution of the heat transfer coefficient (HTC) are in general agreement with the experimental data, although the locations of the maximal local HTC are slightly different from the experimental result. The simulation results demonstrated that the proposed CFD-DEM-IBM method is an efficient tool to study the heat transfer problem in fluidized beds with complex geometries.

1.
Q. F.
Hou
,
Z. Y.
Zhou
, and
A. B.
Yu
, “
Computational study of heat transfer in a bubbling fluidized bed with a horizontal tube
,”
AIChE J.
58
,
1422
1434
(
2012
).
2.
L.
Lu
,
A.
Morris
,
T.
Li
, and
S.
Benyahia
, “
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
,”
Int. J. Heat Mass Transfer
111
,
723
735
(
2017
).
3.
Y.
Zhao
,
M.
Jiang
,
Y.
Liu
, and
J.
Zheng
, “
Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube
,”
AIChE J.
55
,
3109
3124
(
2009
).
4.
Z.
Peng
,
E.
Doroodchi
, and
B.
Moghtaderi
, “
Heat transfer modelling in discrete element method (DEM)-based simulations of thermal processes: Theory and model development
,”
Prog. Energy Combust. Sci.
79
,
100847
(
2020
).
5.
Y.
Tsuji
,
T.
Kawaguchi
, and
T.
Tanaka
, “
Discrete particle simulation of two-dimensional fluidized bed
,”
Powder Technol.
77
,
79
87
(
1993
).
6.
B. P. B.
Hoomans
,
J. A. M.
Kuipers
,
W. J.
Briels
, and
W. P. M.
van Swaaij
, “
Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach
,”
Chem. Eng. Sci.
51
,
99
118
(
1996
).
7.
B. H.
Xu
and
A. B.
Yu
, “
Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics
,”
Chem. Eng. Sci.
52
,
2785
2809
(
1997
).
8.
M. A.
van der Hoef
,
M.
Ye
,
M.
van Sint Annaland
,
A. T.
Andrews
,
S.
Sundaresan
, and
J. A. M.
Kuipers
, “
Multiscale modeling of gas-fluidized beds
,”
Adv. Chem. Eng.
31
,
65
149
(
2006
).
9.
N. G.
Deen
,
M.
Van Sint Annaland
,
M. A.
van der Hoef
, and
J. A. M.
Kuipers
, “
Review of discrete particle modeling of fluidized beds
,”
Chem. Eng. Sci.
62
,
28
44
(
2007
).
10.
H. P.
Zhu
,
Z. Y.
Zhou
,
R. Y.
Yang
, and
A. B.
Yu
, “
Discrete particle simulation of particulate systems: Theoretical developments
,”
Chem. Eng. Sci.
62
,
3378
3396
(
2007
).
11.
W.
Ge
,
L.
Wang
,
J.
Xu
,
F.
Chen
,
G.
Zhou
,
L.
Lu
,
Q.
Chang
, and
J.
Li
, “
Discrete simulation of granular and particle-fluid flows: From fundamental study to engineering application
,”
Rev. Chem. Eng.
33
,
551
623
(
2017
).
12.
S.
Golshan
,
R.
Sotudeh-Gharebagh
,
R.
Zarghami
,
N.
Mostoufi
,
B.
Blais
, and
J. A. M.
Kuipers
, “
Review and implementation of CFD-DEM applied to chemical process systems
,”
Chem. Eng. Sci.
221
,
115646
(
2020
).
13.
Z. Y.
Zhou
,
A. B.
Yu
, and
P.
Zulli
, “
Particle scale study of heat transfer in packed and bubbling fluidized beds
,”
AIChE J.
55
,
868
884
(
2009
).
14.
J. M.
Musser
, “
Modeling of heat transfer and reactive chemistry for particles in gas-solid flow utilizing continuum-discrete methodology (CDM)
,” Ph.D. thesis,
West Virginia University
,
2011
.
15.
K.
Qiu
,
F.
Wu
,
S.
Yang
,
K.
Luo
,
K. K.
Luo
, and
J.
Fan
, “
Heat transfer and erosion mechanisms of an immersed tube in a bubbling fluidized bed: A LES-DEM approach
,”
Int. J. Therm. Sci.
100
,
357
371
(
2016
).
16.
J.
Grace
, “
Influence of riser geometry on particle and fluid dynamics in circulating fluidized bed risers
,” in
Circulating Fluidized Bed Technology V
(
Beijing Science Press
,
Beijing
,
1996
), pp.
16
26
.
17.
B.
Zhao
,
Q.
Zhou
,
J.
Wang
, and
J.
Li
, “
CFD study of exit effect of high-density CFB risers with EMMS-based two-fluid model
,”
Chem. Eng. Sci.
134
,
477
488
(
2015
).
18.
Q. F.
Hou
,
Z. Y.
Zhou
, and
A. B.
Yu
, “
Gas-solid flow and heat transfer in fluidized beds with tubes: Effects of material properties and tube array settings
,”
Powder Technol.
296
,
59
71
(
2016
).
19.
K. W.
Chu
and
A. B.
Yu
, “
Numerical simulation of complex particle-fluid flows
,”
Powder Technol.
179
,
104
114
(
2008
).
20.
H.
Wahyudi
,
K.
Chu
, and
A.
Yu
, “
3D particle-scale modeling of gas-solids flow and heat transfer in fluidized beds with an immersed tube
,”
Int. J. Heat Mass Transfer
97
,
521
537
(
2016
).
21.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
22.
H.
Neau
,
M.
Pigou
,
P.
Fede
,
R.
Ansart
,
C.
Baudry
,
N.
Mérigoux
,
J.
Laviéville
,
Y.
Fournier
,
N.
Renon
, and
O.
Simonin
, “
Massively parallel numerical simulation using up to 36,000 CPU cores of an industrial-scale polydispersed reactive pressurized fluidized bed with a mesh of one billion cells
,”
Powder Technol.
366
,
906
924
(
2020
).
23.
D.
Rong
,
T.
Mikami
, and
M.
Horio
, “
Particle and bubble movements around tubes immersed in fluidized beds—A numerical study
,”
Chem. Eng. Sci.
54
,
5737
5754
(
1999
).
24.
D.
Rong
and
M.
Horio
, “
Behavior of particles and bubbles around immersed tubes in a fluidized bed at high temperature and pressure: A DEM simulation
,”
Int. J. Multiphase Flow
27
,
89
105
(
2001
).
25.
C. S.
Peskin
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
,
252
271
(
1972
).
26.
Ž.
Tuković
and
H.
Jasak
, “
Immersed boundary method in OpenFOAM®
,” in
7th OpenFOAM® Workshop
(
Technische Universität Darmstadt
,
Germany
,
2012
), pp.
25
28
.
27.
F.
Sotiropoulos
and
X.
Yang
, “
Immersed boundary methods for simulating fluid-structure interaction
,”
Prog. Aerosp. Sci.
65
,
1
21
(
2014
).
28.
W.
Kim
and
H.
Choi
, “
Immersed boundary methods for fluid-structure interaction: A review
,”
Int. J. Heat Fluid Flow
75
,
301
309
(
2019
).
29.
B. E.
Griffith
and
N. A.
Patankar
, “
Immersed methods for fluid-structure interaction
,”
Annu. Rev. Fluid Mech.
52
,
421
448
(
2020
).
30.
J.
Kim
and
H.
Choi
, “
An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries
,”
KSME Int. J.
18
,
1026
1035
(
2004
).
31.
D.
Pan
, “
A general boundary condition treatment in immersed boundary methods for incompressible Navier-Stokes equations with heat transfer
,”
Numer. Heat Transfer, Part B
61
,
279
297
(
2012
).
32.
H.
Tavassoli
,
S. H. L.
Kriebitzsch
,
M. A.
Van der Hoef
,
E. A. J. F.
Peters
, and
J. A. M.
Kuipers
, “
Direct numerical simulation of particulate flow with heat transfer
,”
Int. J. Multiphase Flow
57
,
29
37
(
2013
).
33.
K. A.
Buist
,
B. J. G. H.
Backx
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
A combined experimental and simulation study of fluid-particle heat transfer in dense arrays of stationary particles
,”
Chem. Eng. Sci.
169
,
310
320
(
2017
).
34.
F.
Municchi
and
S.
Radl
, “
Consistent closures for Euler-Lagrange models of bi-disperse gas-particle suspensions derived from particle-resolved direct numerical simulations
,”
Int. J. Heat Mass Transfer
111
,
171
190
(
2017
).
35.
F.
Municchi
and
S.
Radl
, “
Momentum, heat and mass transfer simulations of bounded dense mono-dispersed gas-particle systems
,”
Int. J. Heat Mass Transfer
120
,
1146
1161
(
2018
).
36.
P.
De Palma
,
M. D.
De Tullio
,
G.
Pascazio
, and
M.
Napolitano
, “
An immersed-boundary method for compressible viscous flows
,”
Comput. Fluids
35
,
693
702
(
2006
).
37.
M. D.
de Tullio
,
P.
De Palma
,
G.
Iaccarino
,
G.
Pascazio
, and
M.
Napolitano
, “
An immersed boundary method for compressible flows using local grid refinement
,”
J. Comput. Phys.
225
,
2098
2117
(
2007
).
38.
K.
Luo
,
Z.
Zhuang
,
J.
Fan
, and
N. E. L.
Haugen
, “
A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions
,”
Int. J. Heat Mass Transfer
92
,
708
717
(
2016
).
39.
H.
Riahi
,
M.
Meldi
,
J.
Favier
,
E.
Serre
, and
E.
Goncalves
, “
A pressure-corrected immersed boundary method for the numerical simulation of compressible flows
,”
J. Comput. Phys.
374
,
361
383
(
2018
).
40.
M. E.
Khalili
,
M.
Larsson
, and
B.
Müller
, “
High-order ghost-point immersed boundary method for viscous compressible flows based on summation-by-parts operators
,”
Int. J. Numer. Methods Fluids
89
,
256
282
(
2019
).
41.
J. F.
De Jong
,
M.
van Sint Annaland
, and
J. A. M.
Kuipers
, “
Membrane-assisted fluidized beds. Part 1: Development of an immersed boundary discrete particle model
,”
Chem. Eng. Sci.
84
,
814
821
(
2012
).
42.
J. F.
De Jong
,
M.
van Sint Annaland
, and
J. A. M.
Kuipers
, “
Membrane-assisted fluidized beds. Part 2: Numerical study on the hydrodynamics around immersed gas-permeating membrane tubes
,”
Chem. Eng. Sci.
84
,
822
833
(
2012
).
43.
Y.
Guo
,
C.-Y.
Wu
, and
C.
Thornton
, “
Modeling gas-particle two-phase flows with complex and moving boundaries using DEM-CFD with an immersed boundary method
,”
AIChE J.
59
,
1075
1087
(
2013
).
44.
H.
Yao
,
Y.
Mori
,
K.
Takabatake
,
X.
Sun
, and
M.
Sakai
, “
Numerical investigation on the influence of air flow in a die filling process
,”
J. Taiwan Inst. Chem. Eng.
90
,
9
17
(
2018
).
45.
Y.
Xu
,
J. T.
Padding
,
M. A.
van der Hoef
, and
J. A. M.
Kuipers
, “
Detailed numerical simulation of an intruder impacting on a granular bed using a hybrid discrete particle and immersed boundary (DP-IB) method
,”
Chem. Eng. Sci.
104
,
201
207
(
2013
).
46.
X.
Ku
,
J.
Lin
,
M.
van Sint Annaland
, and
R.
Hagmeijer
, “
Numerical simulation of the accumulation of heavy particles in a circular bounded vortex flow
,”
Int. J. Multiphase Flow
87
,
80
89
(
2016
).
47.
X.
Ku
,
H.
Li
,
J.
Lin
,
H.
Jin
, and
F.
Shen
, “
Accumulation of heavy particles in a circular bounded vortex flow: Parameter influence and comparison
,”
Int. J. Multiphase Flow
103
,
124
140
(
2018
).
48.
Y.
Mori
,
C.-Y.
Wu
, and
M.
Sakai
, “
Validation study on a scaling law model of the DEM in industrial gas-solid flows
,”
Powder Technol.
343
,
101
112
(
2019
).
49.
P.
Zhao
,
J.
Xu
,
W.
Ge
, and
J.
Wang
, “
A CFD-DEM-IBM method for Cartesian grid simulation of gas-solid flow in complex geometries
,”
Chem. Eng. J.
389
,
124343
(
2020
).
50.
R.
Sadeghbeigi
,
Fluid Catalytic Cracking Handbook
(
Elsevier
,
1995
).
51.
M.
Liu
,
R.
Liu
,
B.
Liu
, and
Y.
Shao
, “
Preparation of the coated nuclear fuel particle using the fluidized bed-chemical vapor deposition (FB-CVD) method
,”
Procedia Eng.
102
,
1890
1895
(
2015
).
52.
J.
Xu
,
H.
Qi
,
X.
Fang
,
L.
Lu
,
W.
Ge
,
X.
Wang
,
M.
Xu
,
F.
Chen
,
X.
He
, and
J.
Li
, “
Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing
,”
Particuology
9
,
446
450
(
2011
).
53.
C.
Peng
,
B.
Kong
,
J.
Zhou
,
B.
Sun
,
A.
Passalacqua
,
S.
Subramaniam
, and
R. O.
Fox
, “
Implementation of pseudo-turbulence closures in an Eulerian-Eulerian two-fluid model for non-isothermal gas-solid flow
,”
Chem. Eng. Sci.
207
,
663
671
(
2019
).
54.
M.
Mehrabadi
,
S.
Tenneti
,
R.
Garg
, and
S.
Subramaniam
, “
Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas-solid flow: Fixed particle assemblies and freely evolving suspensions
,”
J. Fluid Mech.
770
,
210
246
(
2015
).
55.
B.
Sun
,
S.
Tenneti
,
S.
Subramaniam
, and
D. L.
Koch
, “
Pseudo-turbulent heat flux and average gas-phase conduction during gas-solid heat transfer: Flow past random fixed particle assemblies
,”
J. Fluid Mech.
798
,
299
349
(
2016
).
56.
D.
Gidaspow
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
(
Academic Press
,
1994
).
57.
P. A.
Cundall
and
O. D. L.
Strack
, “
A discrete numerical model for granular assemblies
,”
Géotechnique
29
,
47
65
(
1979
).
58.
J. H.
Seo
and
R.
Mittal
, “
A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries
,”
J. Comput. Phys.
230
,
1000
1019
(
2011
).
59.
H.
Luo
,
R.
Mittal
,
X.
Zheng
,
S. A.
Bielamowicz
,
R. J.
Walsh
, and
J. K.
Hahn
, “
An immersed-boundary method for flow-structure interaction in biological systems with application to phonation
,”
J. Comput. Phys.
227
,
9303
9332
(
2008
).
60.
J.
Li
and
D. J.
Mason
, “
A computational investigation of transient heat transfer in pneumatic transport of granular particles
,”
Powder Technol.
112
,
273
282
(
2000
).
61.
G. K.
Batchelor
and
R.
O’brien
, “
Thermal or electrical conduction through a granular material
,”
Proc. R. Soc. London, Ser. A
355
,
313
333
(
1977
).
62.
D.
Rong
and
M.
Horio
, “
DEM simulation of char combustion in a fluidized bed
,” in
Second International Conference on CFD in the Minerals and Process Industries
(
CSIRO
,
Melbourne, Australia
,
1999
), pp.
65
70
.
63.
H.
Jasak
, “
Error analysis and estimation for the finite volume method with applications to fluid flows
,” Ph.D. thesis,
Imperial College London, University of London
,
1996
.
64.
F.
Moukalled
,
L.
Mangani
,
M.
Darwish
 et al,
The Finite Volume Method in Computational Fluid Dynamics
(
Springer
,
2016
), Vol. 113.
65.
T.
Holzmann
, “
Mathematics, numerics, derivations and OpenFOAM®
,”
Holzmann CFD
,
Loeben, Germany
,
2016
.
66.
T.
Kempe
,
S.
Schwarz
, and
J.
Fröhlich
, “
Modelling of spheroidal particles in viscous flows
,” in
Proceedings of the Academy Colloquium Immersed Boundary Methods: Current Status and Future Research Directions, 15–17 June 2009
(
2009
), Vol. 845.
67.
N. M.
Catipovic
, “
Heat transfer to horizontal tubes in fluidized beds: Experiment and theory
,” Ph.D. thesis,
Oregon State University
,
1979
.
68.
L.
Lu
,
J.
Xu
,
W.
Ge
,
Y.
Yue
,
X.
Liu
, and
J.
Li
, “
EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows
,”
Chem. Eng. Sci.
120
,
67
87
(
2014
).
69.
R. D.
Henderson
, “
Details of the drag curve near the onset of vortex shedding
,”
Phys. Fluids
7
,
2102
2104
(
1995
).
70.
D. J.
Tritton
, “
Experiments on the flow past a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
6
,
547
567
(
1959
).
71.
S. C. R.
Dennis
and
G.-Z.
Chang
, “
Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100
,”
J. Fluid Mech.
42
,
471
489
(
1970
).
72.
M.
Al-Marouf
and
R.
Samtaney
, “
A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry
,”
J. Comput. Phys.
337
,
339
378
(
2017
).
73.
E.
Berger
and
R.
Wille
, “
Periodic flow phenomena
,”
Annu. Rev. Fluid Mech.
4
,
313
340
(
1972
).
74.
C.
Liu
,
X.
Zheng
, and
C. H.
Sung
, “
Preconditioned multigrid methods for unsteady incompressible flows
,”
J. Comput. Phys.
139
,
35
57
(
1998
).
75.
F.
De Vanna
,
F.
Picano
, and
E.
Benini
, “
A sharp-interface immersed boundary method for moving objects in compressible viscous flows
,”
Comput. Fluids
201
,
104415
(
2020
).
76.
R.
Ghias
,
R.
Mittal
, and
T.
Lund
, “
A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries
,” in
42nd AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2004
).
77.
S.
Takahashi
,
T.
Nonomura
, and
K.
Fukuda
, “
A numerical scheme based on an immersed boundary method for compressible turbulent flows with shocks: Application to two-dimensional flows around cylinders
,”
J. Appl. Math.
2014
,
252478
.
78.
M.
Sabanca
and
F.
Durst
, “
Flows past a tiny circular cylinder at high temperature ratios and slight compressible effects on the vortex shedding
,”
Phys. Fluids
15
,
1821
1829
(
2003
).
79.
J.
Wang
,
M. A.
Van der Hoef
, and
J. A. M.
Kuipers
, “
Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: A tentative answer
,”
Chem. Eng. Sci.
64
,
622
625
(
2009
).
80.
J.
Wang
, “
Continuum theory for dense gas-solid flow: A state-of-the-art review
,”
Chem. Eng. Sci.
215
,
115428
(
2020
).
81.
J. P.
Holman
,
Heat Transfer
, 6th ed. (
McGraw Hill
,
1986
), p.
274
.
82.
J. R.
Welty
,
C. E.
Wicks
,
G.
Rorrer
, and
R. E.
Wilson
,
Fundamentals of Momentum, Heat, and Mass Transfer
(
John Wiley & Sons
,
2009
), p.
311
.
83.
F. P.
Incropera
,
Fundamentals of Heat and Mass Transfer
, 6th ed. (
John Wiley & Sons
,
2007
), p.
412
.
84.
D.
Kunni
and
O.
Levenspiel
,
Fluidization Engineering
(
Elsevier
,
1991
), p.
313
.
85.
D. H.
Glass
and
D.
Harrison
, “
Flow patterns near a solid obstacle in a fluidized bed
,”
Chem. Eng. Sci.
19
,
1001
1002
(
1964
).
86.
O.
Molerus
and
K.-E.
Wirth
,
Heat Transfer in Fluidized Beds
(
Springer Science & Business Media
,
1997
), Vol. 11.
You do not currently have access to this content.