A series of three-dimensional numerical simulations have been carried out to examine the characteristics of thermal-solutal Marangoni convection in a rectangular cavity that is subjected to mutually perpendicular temperature and concentration gradients. In the simulations, the thermal Marangoni number MaT is selected as 0, 1, 3, and 7 × 104, but the solutal Marangoni number MaC is varied in order to be able to investigate the complex flow patterns and flow transitions. Results show that the flow is steady at relatively small MaC. Then, at this MaC value, we observe three types of steady flows as MaT increases, namely, a longitudinal surface flow, an oblique stripe flow, and a lateral surface flow. When MaC exceeds a critical value, the stability of the Marangoni flow is destroyed, and a three-dimensional oscillatory flow appears. For the oscillatory flow, the wave patterns of temperature and concentration fluctuations are highly dependent on the coupling of the thermal and solutal Marangoni effect. Two different propagation directions of wave patterns coexist on the free surface when the contributions of thermal and solutal flows are in the same order (i.e., MaC is approximately equal to MaT). In addition, a sudden drop in the wave frequency and a backward transition phenomenon from chaotic to oscillatory are also observed. For all the cases of the thermal Marangoni numbers, thermal-solutal Marangoni convection becomes chaotic at higher MaC values. The present study would provide more physical insights into industrial processes such as painting and drying.

1.
D.
Walker
and
S. E.
DeLong
, “
Soret separation of mid-ocean ridge basalt magma
,”
Contrib. Mineral. Petrol.
79
,
231
240
(
1982
).
2.
M.
Schmitt
and
H.
Stark
, “
Marangoni flow at droplet interfaces: Three-dimensional solution and applications
,”
Phys. Fluids
28
,
012106
(
2016
).
3.
K.-X.
Hu
,
C.-Y.
Yan
, and
Q.-S.
Chen
, “
Instability of thermocapillary-buoyancy convection in droplet migration
,”
Phys. Fluids
31
,
122101
(
2019
).
4.
D.
Kang
,
A.
Nadim
, and
M.
Chugunova
, “
Marangoni effects on a thin liquid film coating a sphere with axial or radial thermal gradients
,”
Phys. Fluids
29
,
072106
(
2017
).
5.
K.
Motegi
,
M.
Kudo
, and
I.
Ueno
, “
Linear stability of buoyant thermocapillary convection for a high-Prandtl number fluid in a laterally heated liquid bridge
,”
Phys. Fluids
29
,
044106
(
2017
).
6.
T.
Yamamoto
,
Y.
Takagi
,
Y.
Okano
, and
S.
Dost
, “
Numerical investigation of oscillatory thermocapillary flows under zero gravity in a circular liquid film with concave free surfaces
,”
Phys. Fluids
28
,
032106
(
2016
).
7.
C.-M.
Wu
,
J.-H.
Chen
,
B.
Yuan
, and
Y.-R.
Li
, “
Bifurcations and pattern evolutions of thermo-solutocapillary flow in rotating cylinder with a top disk
,”
Phys. Fluids
31
,
094103
(
2019
).
8.
T.
Yamamoto
,
Y.
Okano
,
T.
Ujihara
, and
S.
Dost
, “
Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation
,”
J. Cryst. Growth
470
,
75
88
(
2017
).
9.
P. J.
Sáenz
,
P.
Valluri
,
K.
Sefiane
,
G.
Karapetsas
, and
O. K.
Matar
, “
On phase change in Marangoni-driven flows and its effects on the hydrothermal-wave instabilities
,”
Phys. Fluids
26
,
024114
(
2014
).
10.
A.
Mohammadtabar
,
H.
Nazaripoor
,
A.
Riad
,
A.
Hemmati
, and
M.
Sadrzadeh
, “
A numerical study for thermocapillary induced patterning of thin liquid films
,”
Phys. Fluids
32
,
024106
(
2020
).
11.
S.
Kim
,
J.
Kim
, and
H.-Y.
Kim
, “
Formation, growth, and saturation of dry holes in thick liquid films under vapor-mediated Marangoni effect
,”
Phys. Fluids
31
,
112105
(
2019
).
12.
M. K.
Smith
and
S. H.
Davis
, “
Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities
,”
J. Fluid Mech.
132
,
119
144
(
1983
).
13.
M. K.
Smith
, “
Instability mechanisms in dynamic thermocapillary liquid layers
,”
Phys. Fluids
29
,
3182
3186
(
1986
).
14.
S.
Benz
and
D.
Schwabe
, “
The three-dimensional stationary instability in dynamic thermocapillary shallow cavities
,”
Exp. Fluids
31
,
409
416
(
2001
).
15.
T.
Yano
,
K.
Nishino
,
I.
Ueno
,
S.
Matsumoto
, and
Y.
Kamotani
, “
Sensitivity of hydrothermal wave instability of Marangoni convection to the interfacial heat transfer in long liquid bridges of high Prandtl number fluids
,”
Phys. Fluids
29
,
044105
(
2017
).
16.
R. J.
Riley
and
G. P.
Neitzel
, “
Instability of thermocapillary-buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities
,”
J. Fluid Mech.
359
,
143
164
(
1998
).
17.
Q.
Kang
,
D.
Wu
,
L.
Duan
,
J.
Zhang
,
B.
Zhou
,
J.
Wang
,
Z.
Han
,
L.
Hu
, and
W.
Hu
, “
Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2
,”
Phys. Fluids
32
,
034107
(
2020
).
18.
J.
Burguete
,
N.
Mukolobwiez
,
F.
Daviaud
,
N.
Garnier
, and
A.
Chiffaudel
, “
Buoyant-thermocapillary instabilities in extended liquid layers subjected to a horizontal temperature gradient
,”
Phys. Fluids
13
,
2773
2787
(
2001
).
19.
J.
Xu
and
A.
Zebib
, “
Oscillatory two- and three-dimensional thermocapillary convection
,”
J. Fluid Mech.
364
,
187
209
(
1998
).
20.
L.
Peng
,
Y.-R.
Li
,
W.-Y.
Shi
, and
N.
Imaishi
, “
Three-dimensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool
,”
Int. J. Heat Mass Transfer
50
,
872
880
(
2007
).
21.
L.
Zhang
,
Y.-R.
Li
, and
C.-M.
Wu
, “
Effect of surface heat dissipation on thermocapillary convection of low Prandtl number fluid in a shallow annular pool
,”
Int. J. Heat Mass Transfer
110
,
460
466
(
2017
).
22.
L.
Zhang
,
Y.-R.
Li
,
C.-M.
Wu
, and
Q.-S.
Liu
, “
Flow pattern transition and destabilization mechanism of thermocapillary convection for low Prandtl number fluid in a deep annular pool with surface heat dissipation
,”
Int. J. Heat Mass Transfer
126
,
118
127
(
2018
).
23.
M.
Iguchi
and
O. J.
Ilegbusi
,
Modeling Multiphase Materials Processes
(
Springer
,
2011
).
24.
L.
Wang
,
T.
Horiuchi
,
A.
Sekimoto
,
Y.
Okano
,
T.
Ujihara
, and
S.
Dost
, “
Three-dimensional numerical analysis of Marangoni convection occurring during the growth process of SiC by the RF-TSSG method
,”
J. Cryst. Growth
520
,
72
81
(
2019
).
25.
T. L.
Bergman
, “
Numerical simulation of double-diffusive Marangoni convection
,”
Phys. Fluids
29
,
2103
2108
(
1986
).
26.
K.
Arafune
and
A.
Hirata
, “
Interactive solutal and thermal Marangoni convection in a rectangular open boat
,”
Numer. Heat Transfer, Part A
34
,
421
429
(
1998
).
27.
K.
Arafune
,
K.
Yamamoto
, and
A.
Hirata
, “
Interactive thermal and solutal Marangoni convection during compound semiconductor growth in a rectangular open boat
,”
Int. J. Heat Mass Transfer
44
,
2405
2411
(
2001
).
28.
Z.-W.
Chen
,
Y.-s.
Li
, and
J.-M.
Zhan
, “
Double-diffusive Marangoni convection in a rectangular cavity: Onset of convection
,”
Phys. Fluids
22
,
034106
(
2010
).
29.
J.-M.
Zhan
,
Z.-W.
Chen
,
Y.-S.
Li
, and
Y.-H.
Nie
, “
Three-dimensional double-diffusive Marangoni convection in a cubic cavity with horizontal temperature and concentration gradients
,”
Phys. Rev. E
82
,
066305
(
2010
).
30.
X.
Zhou
and
X.
Huai
, “
Thermosolutocapillary convection in an open rectangular cavity with dynamic free surface
,”
J. Heat Transfer
137
,
082901
(
2015
).
31.
X.
Zhou
and
X.
Huai
, “
Influence of thermal and solutal Marangoni effects on free surface deformation in an open rectangular cavity
,”
J. Therm. Sci.
26
,
255
262
(
2017
).
32.
M.
Curak
,
N.
Saranjam
, and
S.
Chandra
, “
Colour variation in drying paint films
,”
Prog. Org. Coat.
136
,
105173
(
2019
).
33.
F.
Doumenc
,
E.
Chénier
,
B.
Trouette
,
T.
Boeck
,
C.
Delcarte
,
B.
Guerrier
, and
M.
Rossi
, “
Free convection in drying binary mixtures: Solutal versus thermal instabilities
,”
Int. J. Heat Mass Transfer
63
,
336
350
(
2013
).
34.
H.
Minakuchi
,
Y.
Takagi
,
Y.
Okano
,
K.
Mizoguchi
,
S.
Gima
, and
S.
Dost
, “
A grid refinement study of half-zone configuration of the floating zone growth system
,”
J. Adv. Res. Phys.
3
,
011201
(
2017
).
35.
F.
Wang
,
L.
Peng
,
Q.
Zhang
, and
J.
Liu
, “
Effect of the vertical heat transfer on the thermocapillary convection in a shallow annular pool
,”
Microgravity Sci. Technol.
27
,
107
114
(
2015
).
36.
J.-J.
Yu
,
Y.-R.
Li
,
J.-C.
Chen
,
Y.
Zhang
, and
C.-M.
Wu
, “
Thermal-solutal capillary-buoyancy flow of a low Prandtl number binary mixture with various capillary ratios in an annular pool
,”
Int. J. Heat Mass Transfer
113
,
40
52
(
2017
).
37.
I.
Ueno
,
S.
Tanaka
, and
H.
Kawamura
, “
Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge
,”
Phys. Fluids
15
,
408
416
(
2003
).
38.
J.-J.
Yu
,
C.-Y.
Tang
,
Y.-R.
Li
, and
T.
Qin
, “
Numerical simulation study on the pure solutocapillary flow of a binary mixture with various solutal coefficients of surface tension in an annular pool
,”
Int. Commun. Heat Mass Transfer
108
,
104342
(
2019
).
39.
J.-C.
Chen
,
L.
Zhang
,
Y.-R.
Li
, and
J.-J.
Yu
, “
Three-dimensional numerical simulation of pure solutocapillary flow in a shallow annular pool for mixture fluid with high schmidt number
,”
Microgravity Sci. Technol.
28
,
49
57
(
2016
).
40.
J.-C.
Chen
,
C.-M.
Wu
,
Y.-R.
Li
, and
J.-J.
Yu
, “
Effect of capillary ratio on thermal-solutal capillary-buoyancy convection in a shallow annular pool with radial temperature and concentration gradients
,”
Int. J. Heat Mass Transfer
109
,
367
377
(
2017
).
41.
H.
Liu
,
Z.
Zeng
,
L.
Yin
,
Z.
Qiu
, and
L.
Zhang
, “
Effect of the Prandtl number on the instabilities of the thermocapillary flow in an annular pool
,”
Phys. Fluids
31
,
034103
(
2019
).
42.
C.
Jin
,
A.
Sekimoto
,
Y.
Okano
,
H.
Minakuchi
, and
S.
Dost
, “
Characterization of the thermal and solutal Marangoni flows of opposite directions developing in a cylindrical liquid bridge under zero gravity
,”
Phys. Fluids
32
,
034104
(
2020
).
You do not currently have access to this content.