The evolution of solid shapes in dissolutive flows is studied using molecular dynamics simulations. The final self-similar structures of the solid are distinct under the convection- and diffusion-dominated conditions. Introducing a dimensionless number, Ds, allows characterizing the relative influence of convection and diffusion on the final structure. When convection dominates, the convergent shape of the solid is approximately triangular, while the solid is more likely to be sculptured into a cylinder when diffusion dominates. There is a critical value of Ds that controls the transition between convection- and diffusion-dominated cases. However, the convergent shapes are insensitive to their initial states due to the solid assembly at the nanoscale. Furthermore, we discuss the influences of solid dissolution and assembly on the liquid density along different directions and provide fitting curves for the theoretical density distribution as explained from the Smoluchowski equation. Finally, the scaling laws are constructed to quantify the solid evolution, which can analytically forecast the shape evolution under different dominant factors. We believe that these findings provide theoretical support for structure optimization and industrial applications.

1.
G.
Marzun
,
H.
Bönnemann
,
C.
Lehmann
,
B.
Spliethoff
,
C.
Weidenthaler
, and
S.
Barcikowski
, “
Role of dissolved and molecular oxygen on Cu and PtCu alloy particle structure during laser ablation synthesis in liquids
,”
ChemPhysChem
18
,
1175
1184
(
2017
).
2.
Y. P.
Zhao
,
Nano and Mesoscopic Mechanics
(
Science Press
,
Beijing
,
2014
).
3.
J.
Purseed
,
B.
Favier
,
L.
Duchemin
, and
E. W.
Hester
, “
Bistability in Rayleigh-Bénard convection with a melting boundary
,”
Phys. Rev. Fluids
5
,
023501
(
2020
).
4.
H.
Gomez
,
M.
Bures
, and
A.
Moure
, “
A review on computational modelling of phase-transition problems
,”
Philos. Trans. R. Soc., A
377
,
20180203
(
2019
).
5.
E.
Hernandez
,
J.
Otero
,
R.
Santiago
,
R.
Martinez
,
F.
Castillo
, and
J.
Oseguera
, “
Non parabolic interface motion for the 1-D Stefan problem: Dirichlet boundary conditions
,”
Therm. Sci.
21
,
2327
2336
(
2017
).
6.
M.
Hadzic
,
G.
Navarro
, and
S.
Shkoller
, “
Local well-posedness and global stability of the two-phase Stefan problem
,”
SIAM J. Math. Anal.
49
,
4942
5006
(
2017
).
7.
Y. P.
Zhao
,
Physical Mechanics of Surfaces and Interfaces
(
Science Press
,
Beijing
,
2012
).
8.
R.
Raliya
,
T.
Singh Chadha
,
K.
Haddad
, and
P.
Biswas
, “
Perspective on nanoparticle technology for biomedical use
,”
Curr. Pharm. Des.
22
,
2841
(
2016
).
9.
J. J.
Hobson
,
A.
Al-Khouja
,
P.
Curley
,
D.
Meyers
,
C.
Flexner
,
M.
Siccardi
,
A.
Owen
,
C. F.
Meyers
, and
S. P.
Rannard
, “
Semi-solid prodrug nanoparticles for long-acting delivery of water-soluble antiretroviral drugs within combination HIV therapies
,”
Nat. Commun.
10
,
1413
(
2019
).
10.
Y.
Lan
,
Z.
Yang
,
P.
Wang
,
Y.
Yan
,
L.
Zhang
, and
J.
Ran
, “
A review of microscopic seepage mechanism for shale gas extracted by supercritical CO2 flooding
,”
Fuel
238
,
412
424
(
2019
).
11.
Y.
Xiao
,
J.
Shao
,
S. K.
Frape
etal., “
Groundwater origin, flow regime and geochemical evolution in arid endorheic watersheds: A case study from the Qaidam Basin, northwestern China
,”
Hydrol. Earth Syst. Sc.
22
,
4381
(
2018
).
12.
M. N. J.
Moore
,
L.
Ristroph
,
S.
Childress
,
J.
Zhang
, and
M. J.
Shelley
, “
Self-similar evolution of a body eroding in a fluid flow
,”
Phys. Fluids
25
,
116602
(
2013
).
13.
P. J.
Missel
,
L. E.
Stevens
, and
J. W.
Mauger
, “
Reexamination of convective diffusion/drug dissolution in a laminar flow channel: Accurate prediction of dissolution rate
,”
Pharm. Res.
21
,
2300
2306
(
2004
).
14.
D.
Smrčka
,
J.
Dohnal
, and
F.
Štěpánek
, “
Dissolution and disintegration kinetics of high-active pharmaceutical granules produced at laboratory and manufacturing scale
,”
Eur. J. Pharm. Biopharm.
106
,
107
116
(
2016
).
15.
D. M.
Anderson
and
M. G.
Worster
, “
Weakly nonlinear analysis of convection in mushy layers during the solidification of binary alloys
,”
J. Fluid Mech.
302
,
307
331
(
1995
).
16.
I.
McCue
,
A.
Karma
, and
J.
Erlebacher
, “
Pattern formation during electrochemical and liquid metal dealloying
,”
MRS Bull.
43
,
27
34
(
2018
).
17.
A.
Singh
,
K. R.
Ansari
,
D. S.
Chauhan
,
M. A.
Quraishi
,
H.
Lgaz
, and
I. M.
Chung
, “
Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium
,”
J. Colloid Interface Sci.
560
,
225
236
(
2020
).
18.
C.
Cohen
,
M.
Berhanu
,
J.
Derr
, and
S. C.
du Pont
, “
Erosion patterns on dissolving and melting bodies
,”
Phys. Rev. Fluids
1
,
050508
(
2016
).
19.
E.
Nakouzi
,
R. E.
Goldstein
, and
O.
Steinbock
, “
Do dissolving objects converge to a universal shape
,”
Langmuir
31
,
4145
4150
(
2014
).
20.
J. M.
Huang
,
M. N. J.
Moore
, and
L.
Ristroph
, “
Shape dynamics and scaling laws for a body dissolving in fluid flow
,”
J. Fluid Mech.
765
,
R3
(
2015
).
21.
M. N. J.
Moore
, “
Riemann-Hilbert problems for the shapes formed by bodies dissolving, melting, and eroding in fluid flows
,”
Commun. Pure Appl. Math.
70
,
1810
1831
(
2017
).
22.
S.
De
and
N. R.
Aluru
, “
Energy dissipation in fluid coupled nanoresonators: The effect of phonon-fluid coupling
,”
ACS Nano
12
,
368
377
(
2018
).
23.
A. M.
Rahmani
,
Y.
Shao
,
M.
Jupiterwala
, and
C. E.
Colosqui
, “
Nanoscale flow past a colloidal cylinder confined in a slit channel: Lubrication theory and molecular dynamics analysis
,”
Phys. Fluids
27
,
082004
(
2015
).
24.
S.
Sarkar
,
S.
Ganguly
,
G.
Biswas
, and
P.
Saha
, “
Effect of cylinder rotation during mixed convective flow of nanofluids past a circular cylinder
,”
Comput. Fluids
127
,
47
64
(
2016
).
25.
K.
Landry
and
N.
Eustathopoulos
, “
Dynamics of wetting in reactive metal/ceramic systems: Linear spreading
,”
Acta Mater.
44
,
3923
3932
(
1996
).
26.
J.
Yang
,
Q.
Yuan
, and
Y.-P.
Zhao
, “
Evolution of the interfacial shape in dissolutive wetting: Coupling of wetting and dissolution
,”
Int. J. Heat Mass Transfer
118
,
201
207
(
2018
).
27.
T. J.
Singler
,
S.
Su
,
L.
Yin
, and
B. T.
Murray
, “
Modeling and experiments in dissolutive wetting: A review
,”
J. Mater. Sci.
47
,
8261
8274
(
2012
).
28.
Q.
Miao
,
Q.
Yuan
, and
Y. P.
Zhao
, “
Dissolutive flow in nanochannels: Transition between plug-like and Poiseuille-like
,”
Microfluid. Nanofluid.
22
,
141
(
2018
).
29.
P. A.
Thompson
and
S. M.
Troian
, “
A general boundary condition for liquid flow at solid surfaces
,”
Nature
389
,
360
(
1997
).
30.
P.
Alipour
,
D.
Toghraie
,
A.
Karimipour
, and
M.
Hajian
, “
Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium
,”
Physica A
515
,
13
30
(
2019
).
31.
D. C.
Rapaport
and
E.
Clementi
, “
Eddy formation in obstructed fluid flow: A molecular-dynamics study
,”
Phys. Rev. Lett.
57
,
695
(
1986
).
32.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
33.
F. W.
Straatsma
,
J. K.
Nielsen
, and
H. E.
Stanley
, “
Hydrogen-bond dynamics for the extended simple point-charge model of water
,”
Phys. Rev. E
62
,
579
(
2000
).
34.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
,
F.
Noca
, and
P.
Koumoutsakos
, “
Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes
,”
Nano Lett.
1
,
697
702
(
2001
).
35.
P. G.
De Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
36.
N.
Wu
,
L.
Zeng
,
T.
Fu
,
Z.
Wang
, and
C.
Lu
, “
Molecular dynamics study of rapid boiling of thin liquid water film on smooth copper surface under different wettability conditions
,”
Int. J. Heat Mass Transfer
147
,
118905
(
2020
).
37.
M. S. D.
Wykes
,
J.
Mac Huang
,
G. A.
Hajjar
, and
L.
Ristroph
, “
Self-sculpting of a dissolvable body due to gravitational convection
,”
Phys. Rev. Fluids
3
,
043801
(
2018
).
38.
M. H.
Köhler
,
L. B.
Da Silva
, “
Size effects and the role of density on the viscosity of water confined in carbon nanotubes
,”
Chem. Phys. Lett.
645
,
38
41
(
2016
).
39.
X.
Chen
,
G.
Cao
,
A.
Han
,
V. K.
Punyamurtula
,
L.
Liu
,
P. J.
Culligan
,
T.
Kim
, and
Y.
Qiao
, “
Nanoscale fluid transport: Size and rate effects
,”
Nano Lett.
8
,
2988
2992
(
2008
).
40.
S.
Chen
,
N.
Phan-Thien
,
B. C.
Khoo
, and
X. J.
Fan
, “
Flow around spheres by dissipative particle dynamics
,”
Phys. Fluids
18
,
103605
(
2006
).
41.
N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press
,
2015
).
42.
M.
Doi
,
Soft Matter Physics
(
Oxford University Press
,
2013
).
43.
B.
Derjaguin
and
E.
Obuchov
, “
Ultramicrometric analysis of solvate layer and elementary expansion effects
,”
Acta Physicochim. URSS.
5
,
1
22
(
1936
).
44.
A.
Dokoumetzidis
and
P.
Macheras
, “
A century of dissolution research: From Noyes and Whitney to the biopharmaceutics classification system
,”
Int. J. Pharm.
321
,
1
11
(
2006
).

Supplementary Material

You do not currently have access to this content.