Recent experiments conducted in the International Space Station highlight the apparent periodicity of leaf oscillations and other biological phenomena associated with rhythmic variations of lunisolar forces. These events are similar to those occurring on Earth but with greater effects over a shorter period of time. Among the possible disturbances, other than forced or self-existing oscillations, parametric resonances appear caused by a small periodic term; such is the case of fluids subjected to small periodic variations in gravitational forces in microscopic or mesoscopic plant channels filled with sap and air-vapor. The interface instabilities verify Mathieu’s second order differential equation resulting from a Rayleigh–Taylor stability model. These instabilities appear during the Moon’s rotation around the Earth and during the revolution of the International Space Station. They create impulses of pressure and sap movements in the network of roots, stems, and leaves. The model can explain the effects of the lunar tide on plant growth. The eccentricity of the lunar orbit around the Earth creates an important difference between the apogee and perigee of the Moon’s trajectory, and therefore, the tidal effects can depend on the distance between the Moon and the Earth.

1.
N.
Moran
, “
Osmoregulation of leaf motor cells
,”
FEBS Lett.
581
,
2337
(
2007
).
2.
E.
Bünning
,
The Physiological Clock—Circadian Rhythms and Biological Chronometry
, 3rd ed. (
English Universities Press
,
London
,
1973
).
3.
E.
Tavenner
, “
The Roman farmer and the Moon
,”
Trans. Proc. Am. Philological Assoc.
49
,
67
(
1918
), published by The Johns Hopkins University Press, Baltimore.
4.
W.
Engelmann
,
Clocks Which Run According to the Moon Influence of the Moon on the Earth and Its Life
, 4th ed. (
Tobias-lib, University Library
,
Tübingen
,
2009
).
5.
J.
Fisahn
,
P.
Barlow
, and
G.
Dorda
, “
A proposal to explain how the circatidal rhythm of Arabidopsis thaliana root elongation rate could be mediated by the lunisolar gravitational force: A quantum physical approach
,”
Ann. Bot.
122
,
725
(
2018
).
6.
T.
Gonen
and
T.
Walz
, “
The structure of aquaporins
,”
Q. Rev. Biophys.
39
,
361
(
2006
).
7.
P. W.
Barlow
, “
Leaf movements and their relationship with the lunisolar gravitational force
,”
Ann. Bot.
116
,
149
(
2015
).
8.
G.
Klein
,
Farewell to the Internal Clock. A Contribution in the Field of Chronobiology
(
Springer
,
New York
,
2007
).
9.
J.
Fisahn
,
N.
Yazdanbakhsh
,
E.
Klingelé
, and
P.
Barlow
, “
Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration
,”
New Phytol.
195
,
346
(
2012
).
10.
A. S.
Konopliv
,
A. B.
Binder
,
L. L.
Hood
,
A. B.
Kucinskas
,
L.
Sjogren
, and
J. G.
Williams
, “
Improved gravity field of the moon from lunar prospector
,”
Science
281
,
1476
(
1998
).
11.
A. S.
Konopliv
,
S. W.
Asmar
,
E.
Carranza
,
W. L.
Sjogren
, and
D. N.
Yuan
, “
Recent gravity models as a result of the lunar prospector mission
,”
Icarus
150
,
1
(
2001
).
12.
C. M.
Gallep
,
T. A.
Moraes
,
S. R.
dos Santos
, and
P. W.
Barlow
, “
Coincidence of biophoton emission by wheat seedlings during simultaneous, transcontinental germination tests
,”
Protoplasma
250
,
793
(
2012
).
13.
C. M.
Gallep
,
T. A.
Moraes
,
K.
Cervinkova
,
M.
Cifra
,
M.
Katsumata
, and
P. W.
Barlow
, “
Lunisolar tidal synchronism with biophoton emission during intercontinental wheat-seedling germination tests
,”
Plant Signaling Behav.
9
,
e28671
(
2012
).
14.
S. L.
Harmer
, “
The circadian system in higher plants
,”
Annu. Rev. Plant Biol.
60
,
357
(
2009
).
15.
A. B.
James
,
J. A.
Monreal
,
G. A.
Nimmo
,
C. L.
Kelly
,
P.
Herzyk
,
G. I.
Jenkins
, and
H. G.
Nimmo
, “
The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots
,”
Science
322
,
1832
(
2008
).
16.
C. F. C.
Beeson
, “
The moon and plant growth
,”
Nature
158
,
572
(
1946
).
17.
E.
Zürcher
,
M-G.
Cantiani
,
F.
Sorbetti-Guerri
, and
D.
Michel
, “
Tree stem diameters fluctuate with tide
,”
Nature
392
,
665
(
1998
).
18.
U.
Zajaczkowska
and
P. W.
Barlow
, “
The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.)
,”
Plant Biol.
19
,
630
(
2017
).
19.
J.
Xu
,
H.
Sun
, and
B.
Ducarme
, “
A global experimental model for gravity tides of the Earth
,”
J. Geodyn.
38
,
293
(
2004
).
20.
D.
Crossley
,
J.
Hinderer
, and
J.-P.
Boy
, “
Time variation of the European gravity field from superconducting gravimeters
,”
Geophys. J. Int.
161
,
257
(
2005
).
21.
J. D.
Palmer
, “
Review of the dual-clock control of tidal rhythms and the hypothesis that the same clock governs both circatidal and circadian rhythms
,”
Chronobiol. Int.
12
,
299
(
1995
).
22.
L. E.
Miles
,
D. M.
Raynal
, and
M. A.
Wilson
, “
Blind man living in normal society has circadian rhythms of 24.9 hours
,”
Science
198
,
421
(
1977
).
23.
B. J.
Gluckman
,
T. I.
Netoff
,
E. J.
Neel
,
W. L.
Ditto
,
M. L.
Spano
, and
S. J.
Schiff
, “
Stochastic resonance in a neuronal network from mammalian brain
,”
Phys. Rev. Lett.
77
,
4098
(
1996
).
24.
E.
Brinckmann
, “
ESA hardware for plant research on the International Space Station
,”
Adv. Space Res.
36
,
1162
(
2005
).
25.
K.
Bobst
, “How the Moon’s gravity influences Earth,” Mother Nature Network, https://www.mnn.com/earth-matters/space/stories/how-moons-gravity-influences-earth.
26.
A.
Jacob
, “Moon’s gravity could govern plant movement like the tides,” New Scientist Daily News, https://www.newscientist.com/article/dn28051-moons-gravity-could-govern-plant-movement-like-the-tides/.
27.
J.
Fisahn
,
E.
Klingelé
, and
P.
Barlow
, “
Lunar gravity affects leaf movement of Arabidopsis thaliana in the International Space Station
,”
Planta
241
,
1509
(
2015
).
28.
B. G. B.
Solheim
,
A.
Johnsson
, and
T.-H.
Iversen
, “
Ultradian rhythms in Arabidopsis thaliana leaves in microgravity
,”
New Phytol.
183
,
1043
(
2009
).
29.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Dover Publications, Inc.
,
New York
,
1961
).
30.
F.
Charru
,
Hydrodynamic Instabilities
(
Cambridge University Press
,
2011
).
31.
V. I.
Arnold
,
Ordinary Differential Equations
(
Springer
,
Berlin
,
1992
).
32.
D.
Mattia
and
Y.
Gogotsi
, “
Review: Static and dynamic behavior of liquids inside carbon nanotubes
,”
Microfluid. Nanofluid.
5
,
289
(
2008
).
33.
H.
Gouin
, “
Statics and dynamics of fluids in nanotubes
,”
Note Mat.
32
,
105
(
2012
).
34.
A. R.
Seadawy
and
K.
El-Rashidy
, “
Nonlinear Rayleigh–Taylor instability of the cylindrical fluid flow with mass and heat transfer
,”
Pramana
87
,
20
(
2016
).
35.
Z. X.
Hu
,
Y. S.
Zhang
,
B.
Tian
,
Z.
He
, and
L.
Li
, “
Effect of viscosity on two-dimensional single-mode Rayleigh–Taylor instability during and after the reacceleration stage
,”
Phys. Fluids
31
,
104108
(
2019
).
36.
L.
Landau
and
E.
Lifchitz
,
Fluid Mechanics
(
Mir Edition
,
Moscow
,
1958
).
37.
P. G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
New York
,
2004
).
38.
T.
Ruggeri
,
Stability and Wave Propagation in Fluids and Solids
, CISM Courses and Lectures Vol. 344, edited by
G. P.
Galdi
(
Springer
,
New York
,
1995
), pp.
105
154
.
39.
Handbook of Chemistry and Physics
, 65th ed., edited by
R. C.
Weast
(
CRC Press
,
Boca Raton, FL
,
1984
).
40.
D.
Brouwer
and
G. M.
Clemence
,
Methods of Celestial Mechanics
(
Academic Press
,
New York
,
1961
).
41.
A.
Gougenheim
, in
Lecture at Sixth International Hydrographic Conference, Monaco, April–May
1952
, pp.
22
27
, https://journals.lib.unb.ca/index.php/ihr/article/download/26847/1882519606.
42.
I. M.
Longman
, “
Formulas for computing the tidal accelerations due to the moon and the sun
,”
J. Geophys. Res.
64
,
2351
, (
1959
).
43.
Plant Electrophysiology—Signaling an Responses
, edited by
A. G.
Volkov
(
Springer
,
Heidelberg
,
2012
), pp.
249
279
.
44.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
(
Springer
,
Berlin
,
1989
).
45.
E.
Mathieu
, “
Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique
,”
J. Math. Pures Appl.
13
,
137
(
1868
).
46.
H.
Gouin
,
Introduction to Mathematical Methods of Analytical Mechanics
(
Elsevier & ISTE Editions
,
London
,
2020
).
47.
H.
Gouin
, “
The watering of tall trees–embolization and recovery
,”
J. Theor. Biol.
369
,
42
(
2015
).
48.
H.
Gouin
, “
Continuum mechanics at nanoscale: A tool to study trees’ watering and recovery
,”
Rend. Lincei Mat. Appl.
28
,
415
(
2017
).
49.
X.
Bian
,
H.
Aluie
,
D.
Zhao
,
H.
Zhang
, and
D.
Livescu
, “
Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity
,”
Physica D
403
,
132250
(
2020
).
50.
G.
Boffetta
and
A.
Mazzino
, “
Incompressible Rayleigh–Taylor turbulence
,”
Annu. Rev. Fluid Mech.
49
,
119
(
2017
).
51.
A. D.
Aleksandrov
and
V. A.
Zalgaller
,
Intrinsic Geometry of Surfaces
, Translations of Mathematical Monographs Vol. 15 (
American Mathematical Society
,
Providence, RI
,
1967
).
You do not currently have access to this content.