Chronic rhinosinusitis is a common disease worldwide, and the frequently prescribed nasal sprays do not sufficiently deliver the topical medications to the target sites so that the final treatment in severe cases is surgery. Therefore, there is a huge demand to improve drug delivery devices that could target the maxillary sinuses more effectively. In the present study, different particle diameters and device pulsation flow rates, mainly used in pulsating aerosol delivery devices such as the PARI SINUS®, are considered to evaluate optimal maxillary sinus deposition efficiency (DE). Numerical simulations of the particle-laden flow using a large eddy simulation with a local dynamic k-equation sub-grid scale model are performed in a patient-specific nasal cavity. By increasing the pulsation flow rate from 4 l/min to 15 l/min, nasal DE increases from 37% to 68%. Similarly, by increasing the particle size from 1 µm to 5 µm, nasal DE increases from 34% to 43% for a pulsation flow rate of 4 l/min. Moreover, normalized velocity, vorticities, and particle deposition pattern in different regions of the main nasal cavity and maxillary sinuses are visualized and quantified. Due to the nosepiece placement in the right nostril, more particles penetrate into the right maxillary sinus than into the left maxillary sinus despite the maxillary ostium being larger in the left cavity. Lower pulsation flow rates such as 4 l/min improve the DE in the left maxillary sinus. The use of 3 µm particles enhances the DE in the right maxillary sinus as well as the overall total maxillary drug delivery.

1.
D.
Hastan
,
W. J.
Fokkens
,
C.
Bachert
,
R. B.
Newson
,
J.
Bislimovska
,
A.
Bockelbrink
,
P. J.
Bousquet
,
G.
Brozek
,
A.
Bruno
,
S. E.
Dahlén
,
B.
Forsberg
,
M.
Gunnbjörnsdóttir
,
L.
Kasper
,
U.
Krämer
,
M. L.
Kowalski
,
B.
Lange
,
B.
Lundbäck
,
E.
Salagean
,
A.
Todo-Bom
,
P.
Tomassen
,
E.
Toskala
,
C. M.
Van Drunen
,
J.
Bousquet
,
T.
Zuberbier
,
D.
Jarvis
, and
P.
Burney
, “
Chronic rhinosinusitis in Europe—An underestimated disease. A GA2LEN study
,”
Allergy
66
,
1216
1223
(
2011
).
2.
D. L.
Blackwell
,
J. W.
Lucas
, and
T. C.
Clarke
,
Summary Health Statistics for U.S. Adults: National Health Interview Survey, 2012
, Vital and Health Statistics, Series 10 (
U.S. Department of Health and Human Services
,
2014
), pp.
1
161
, Data from the National Health Survey.
3.
W. J.
Fokkens
,
V. J.
Lund
,
J.
Mullol
,
C.
Bachert
,
I.
Alobid
,
F.
Baroody
,
N.
Cohen
,
A.
Cervin
,
R.
Douglas
,
P.
Gevaert
,
C.
Georgalas
,
H.
Goossens
,
R.
Harvey
,
P.
Hellings
,
C.
Hopkins
,
N.
Jones
,
G.
Joos
,
L.
Kalogjera
,
B.
Kern
,
M.
Kowalski
,
D.
Price
,
H.
Riechelmann
,
R.
Schlosser
,
B.
Senior
,
M.
Thomas
,
E.
Toskala
,
R.
Voegels
,
D. Y.
Wang
, and
P. J.
Wormald
, “
EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists
,”
Rhinology
50
,
1
12
(
2012
).
4.
W.
Fokkens
,
V.
Lund
, and
J.
Mullol
, “
European position paper on rhinosinusitis and nasal polyps 2007
,”
Rhinol. Suppl.
20
,
1
136
(
2007
).
5.
J. D.
Suman
, “
Current understanding of nasal morphology and physiology as a drug delivery target
,”
Drug Delivery Transl. Res.
3
,
4
15
(
2013
).
6.
M.
Boysen
, “
The surface structure of the human nasal mucosa
,”
Virchows Arch. B
40
,
279
294
(
1982
).
7.
A.
Farnoud
,
X. G.
Cui
,
I.
Baumann
, and
E.
Gutheil
, “
Numerical simulation of the dispersion and deposition of a spray carried by a pulsating airflow in a patient-specific human nasal cavity
,”
Atomization Sprays
27
,
913
928
(
2017
).
8.
A.
Farnoud
,
I.
Baumann
,
M. M.
Rashidi
,
O.
Schmid
, and
E.
Gutheil
, “
Simulation of patient-specific bi-directional pulsating nasal aerosol dispersion and deposition with clockwise 45° and 90° nosepieces
,”
Comput. Biol. Med.
123
,
103816
(
2020
).
9.
W.
Möller
,
U.
Schuschnig
,
G.
Meyer
,
K.
Häussinger
,
M.
Keller
,
B.
Junge-Hülsing
, and
H.
Mentzel
, “
Ventilation and aerosolized drug delivery to the paranasal sinuses using pulsating airflow a preliminary study
,”
Rhinology
47
,
405
412
(
2009
).
10.
W.
Möller
,
U.
Schuschnig
,
P.
Bartenstein
,
G.
Meyer
,
K.
Häussinger
,
O.
Schmid
, and
S.
Becker
, “
Drug delivery to paranasal sinuses using pulsating aerosols
,”
J. Aerosol Med. Pulm. Drug Delivery
27
,
255
263
(
2014
).
11.
J.
Xi
,
Z.
Wang
,
X. A.
Si
, and
Y.
Zhou
, “
Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling
,”
Eur. J. Pharm. Sci.
118
,
113
123
(
2018
).
12.
P. G.
Djupesland
and
A.
Skretting
, “
Nasal deposition and clearance in man: Comparison of a bidirectional powder device and a traditional liquid spray pump
,”
J. Aerosol Med. Pulm. Drug Delivery
25
(
5
),
280
289
(
2012
).
13.
P. G.
Djupesland
,
A.
Skretting
,
M.
Winderen
, and
T.
Holand
, “
Breath actuated device improves delivery to target sites beyond the nasal valve
,”
Laryngoscope
116
(
3
),
466
472
(
2006
).
14.
Z.
Zhang
and
C.
Kleinstreuer
, “
Transient airflow structures and particle transport in a sequentially branching lung airway model
,”
Phys. Fluids
14
,
862
880
(
2002
).
15.
H.
Shi
,
C.
Kleinstreuer
,
Z.
Zhang
, and
C. S.
Kim
, “
Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions
,”
Phys. Fluids
16
,
2199
2213
(
2004
).
16.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
,
063303
(
2020
).
17.
H.
Shi
,
C.
Kleinstreuer
, and
Z.
Zhang
, “
Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness
,”
J. Aerosol Sci.
38
,
398
419
(
2007
).
18.
V.
Covello
,
C.
Pipolo
,
A.
Saibene
,
G.
Felisati
, and
M.
Quadrio
, “
Numerical simulation of thermal water delivery in the human nasal cavity
,”
Comput. Biol. Med.
100
,
62
73
(
2018
).
19.
M.
Kiaee
,
H.
Wachtel
,
M. L.
Noga
,
A. R.
Martin
, and
W. H.
Finlay
, “
An idealized geometry that mimics average nasal spray deposition in adults: A computational study
,”
Comput. Biol. Med.
107
,
206
217
(
2019
).
20.
M.
Kiasadegh
,
H.
Emdad
,
G.
Ahmadi
, and
O.
Abouali
, “
Transient numerical simulation of airflow and fibrous particles in a human upper airway model
,”
J. Aerosol Sci.
140
,
105480
(
2020
).
21.
J.
Xi
,
X. A.
Si
,
S.
Peters
,
D.
Nevorski
,
T.
Wen
, and
M.
Lehman
, “
Understanding the mechanisms underlying pulsating aerosol delivery to the maxillary sinus: In vitro tests and computational simulations
,”
Int. J. Pharm.
520
,
254
266
(
2017
).
22.
S.
Basu
,
L. T.
Holbrook
,
K.
Kudlaty
,
O.
Fasanmade
,
J.
Wu
,
A.
Burke
,
B. W.
Langworthy
,
Z.
Farzal
,
M.
Mamdani
,
W. D.
Bennett
,
J. P.
Fine
,
B. A.
Senior
,
A. M.
Zanation
,
C. S.
Ebert
, Jr.
,
A. J.
Kimple
,
B. D.
Thorp
,
D. O.
Frank-Ito
,
G. J. M.
Garcia
, and
J. S.
Kimbell
, “
Numerical evaluation of spray position for improved nasal drug delivery
,”
Sci. Rep.
10
,
10568
(
2020
).
23.
C.
Hilton
,
T.
Wiedmann
,
M. S.
Martin
,
B.
Humphrey
,
R.
Schleiffarth
, and
F.
Rimell
, “
Differential deposition of aerosols in the maxillary sinus of human cadavers by particle size
,”
Am. J. Rhinol. Allergy
22
,
395
398
(
2008
).
24.
M.
Durand
,
J.
Pourchez
,
G.
Aubert
,
S.
Le Guellec
,
L.
Navarro
,
V.
Forest
,
P.
Rusch
, and
M.
Cottier
, “
Impact of acoustic airflow nebulization on intrasinus drug deposition of a human plastinated nasal cast: New insights into the mechanisms involved
,”
Int. J. Pharm.
421
,
63
71
(
2011
).
25.
J.
Xi
,
Z.
Wang
,
D.
Nevorski
,
T.
White
, and
Y.
Zhou
, “
Nasal and olfactory deposition with normal and bidirectional intranasal delivery techniques: In vitro tests and numerical simulations
,”
J. Aerosol Med. Pulm. Drug Delivery
30
,
118
131
(
2017
).
26.
M.
Kleven
,
M. C.
Melaaen
,
M.
Reimers
,
J. S.
Røtnes
,
L.
Aurdal
, and
P. G.
Djupesland
, “
Using computational fluid dynamics (CFD) to improve the bi-directional nasal drug delivery concept
,”
Food Bioprod. Process.
83
,
107
117
(
2005
).
27.
S.
Hosseini
and
L.
Golshahi
, “
An in vitro evaluation of importance of airway anatomy in sub-regional nasal and paranasal drug delivery with nebulizers using three different anatomical nasal airway replicas of 2-, 5- and 50-year old human subjects
,”
Int. J. Pharm.
563
,
426
436
(
2019
).
28.
A.
Lintermann
and
W.
Schröder
, “
A hierarchical numerical journey through the nasal cavity: From nose-like models to real anatomies
,”
Flow, Turbul. Combust.
102
,
89
116
(
2019
).
29.
H.
Calmet
,
A. M.
Gambaruto
,
A. J.
Bates
,
M.
Vázquez
,
G.
Houzeaux
, and
D. J.
Doorly
, “
Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation
,”
Comput. Biol. Med.
69
,
166
180
(
2016
).
30.
H.
Calmet
,
K.
Inthavong
,
B.
Eguzkitza
,
O.
Lehmkuhl
,
G.
Houzeaux
, and
M.
Vázquez
, “
Nasal sprayed particle deposition in a human nasal cavity under different inhalation conditions
,”
PLoS One
14
,
e0221330
(
2019
).
31.
C.
Li
,
J.
Jiang
,
H.
Dong
, and
K.
Zhao
, “
Computational modeling and validation of human nasal airflow under various breathing conditions
,”
J. Biomech.
64
,
59
68
(
2017
).
32.
H.
Calmet
,
D.
Pastrana
,
O.
Lehmkuhl
,
T.
Yamamoto
,
Y.
Kobayashi
,
K.
Tomoda
,
G.
Houzeaux
, and
M.
Vázquez
, “
Dynamic mode decomposition analysis of high-fidelity CFD simulations of the sinus ventilation
,”
Flow, Turbul. Combust.
105
,
699
713
(
2020
).
33.
D. J.
Doorly
,
D. J.
Taylor
, and
R. C.
Schroter
, “
Mechanics of airflow in the human nasal airways
,”
Respir. Physiol. Neurobiol.
163
,
100
110
(
2008
).
34.
T.
Sayadi
and
P.
Moin
, “
Large eddy simulation of controlled transition to turbulence
,”
Phys. Fluids
24
,
114103
(
2012
).
35.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
1765
(
1991
).
36.
Z.
Farzal
,
S.
Basu
,
A.
Burke
,
O. O.
Fasanmade
,
E. M.
Lopez
,
W. D.
Bennett
,
C. S.
Ebert
, Jr.
,
A. M.
Zanation
,
B. A.
Senior
, and
J. S.
Kimbell
, “
Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients
,”
Int. Forum Allergy Rhinol.
9
,
746
758
(
2019
).
37.
H.
Tofighian
,
E.
Amani
, and
M.
Saffar-Avval
, “
Parcel-number-density control algorithms for the efficient simulation of particle-laden two-phase flows
,”
J. Comput. Phys.
387
,
569
588
(
2019
).
38.
C. T.
Crowe
,
Multiphase Flow Handbook
(
CRC Press
,
2006
).
39.
S.
Elghobashi
, “
Particle-laden turbulent flows: Direct simulation and closure models
,”
Appl. Sci. Res.
48
,
301
314
(
1991
).
40.
S.
Elghobashi
, “
On predicting particle-laden turbulent flows
,”
Appl. Sci. Res.
52
,
309
329
(
1994
).
41.
G. B.
Cherobin
,
R. L.
Voegels
,
E. M. M. S.
Gebrim
, and
G. J. M.
Garcia
, “
Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold
,”
PLoS One
13
,
e0207178
(
2018
).
42.
J. K.
Eaton
, “
Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking
,”
Int. J. Multiphase Flow
35
,
792
800
(
2009
).
43.
A.
Yoshizawa
, “
Bridging between eddy-viscosity-type and second-order turbulence models through a two-scale turbulence theory
,”
Phys. Rev. E
48
,
273
(
1993
).
44.
W.-W.
Kim
and
S.
Menon
, “
A new dynamic one-equation subgrid-scale model for large eddy simulations
,” in
33rd Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics
,
1995
).
45.
F. F.
Dizaji
,
J. S.
Marshall
, and
J. R.
Grant
, “
A stochastic vortex structure method for interacting particles in turbulent shear flows
,”
Phys. Fluids
30
,
013301
(
2018
).
46.
A.
Tanière
and
B.
Arcen
, “
Overview of existing Langevin models formalism for heavy particle dispersion in a turbulent channel flow
,”
Int. J. Multiphase Flow
82
,
106
118
(
2016
).
47.
M.
Sommerfeld
, “
Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence
,”
Int. J. Multiphase Flow
27
,
1829
1858
(
2001
).
48.
H.
Tofighian
,
E.
Amani
, and
M.
Saffar-Avval
, “
A large eddy simulation study of cyclones: The effect of sub-models on efficiency and erosion prediction
,”
Powder Technol.
360
,
1237
1252
(
2020
).
49.
L.
Schiller
and
A.
Naumann
, “
A drag coefficient correlation
,”
Z. Ver. Deutsch. Ing.
77
,
318
320
(
1935
).
50.
W. G.
Smith
and
M. P.
Ebert
,
A Method for Unstructured Mesh-to-Mesh Interpolation
(
Naval Surface Warfare Center, Carderock Division
,
Bethesda, MD
,
2010
).
51.
G. B.
Macpherson
,
N.
Nordin
, and
H. G.
Weller
, “
Particle tracking in unstructured, arbitrary polyhedral meshes for use in CFD and molecular dynamics
,”
Commun. Numer. Methods Eng.
25
,
263
273
(
2009
).
52.
M.
Jean-Pierre
,
P.
Eric
, and
C.
Sergio
, “
Weak first- and second-order numerical schemes for stochastic differential equations appearing in Lagrangian two-phase flow modeling
,”
Monte Carlo Methods Appl.
9
,
93
133
(
2003
).
53.
J.
Martínez
,
F.
Piscaglia
,
A.
Montorfano
,
A.
Onorati
, and
S. M.
Aithal
, “
Influence of spatial discretization schemes on accuracy of explicit LES: Canonical problems to engine-like geometries
,”
Comput. Fluids
117
,
62
78
(
2015
).
54.
P. K.
Sweby
, “
High resolution schemes using flux limiters for hyperbolic conservation laws
,”
SIAM J. Numer. Anal.
21
,
995
1011
(
1984
).
55.
F.
Moukalled
,
L.
Mangani
, and
M.
Darwish
,
The Finite Volume Method in Computational Fluid Dynamics
(
Springer International Publishing
,
2016
).
56.
S. M.
Wang
,
K.
Inthavong
,
J.
Wen
,
J. Y.
Tu
, and
C. L.
Xue
, “
Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity
,”
Respir. Physiol. Neurobiol.
166
,
142
151
(
2009
).
57.
A.
Ferrante
and
S.
Elghobashi
, “
On the accuracy of the two-fluid formulation in direct numerical simulation of bubble-laden turbulent boundary layers
,”
Phys. Fluids
19
,
045105
(
2007
).
58.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press, Taylor & Francis Group
,
2015
).
59.
D. A.
Edwards
,
J.
Hanes
,
G.
Caponetti
,
J.
Hrkach
,
A.
Ben-Jebria
,
M. L.
Eskew
,
J.
Mintzes
,
D.
Deaver
,
N.
Lotan
, and
R.
Langer
, “
Large porous particles for pulmonary drug delivery
,”
Science
276
,
1868
1871
(
1997
).
60.
Y. S.
Cheng
,
T. D.
Holmes
,
J.
Gao
,
R. A.
Guilmette
,
S.
Li
,
Y.
Surakitbanharn
, and
C.
Rowlings
, “
Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway
,”
J. Aerosol Med.
14
,
267
280
(
2001
).
61.
D.-J.
Hsu
and
M.-H.
Chuang
, “
In-vivo measurements of micrometer-sized particle deposition in the nasal cavities of Taiwanese adults
,”
Aerosol Sci. Technol.
46
,
631
638
(
2012
).
62.
K.
Inthavong
,
J.
Tu
, and
C.
Heschl
, “
Micron particle deposition in the nasal cavity using the v2–f model
,”
Comput. Fluids
51
,
184
188
(
2011
).
63.
J. T.
Kelly
,
B.
Asgharian
,
J. S.
Kimbell
, and
B. A.
Wong
, “
Particle deposition in human nasal airway replicas manufactured by different methods. Part I: Inertial regime particles
,”
Aerosol Sci. Technol.
38
(
11
),
1063
1071
(
2004
).
64.
J. D.
Schroeter
,
G. J. M.
Garcia
, and
J. S.
Kimbell
, “
Effects of surface smoothness on inertial particle deposition in human nasal models
,”
J. Aerosol Sci.
42
,
52
63
(
2011
).
65.
Y. D.
Shang
,
K.
Inthavong
, and
J. Y.
Tu
, “
Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone
,”
Comput. Fluids
114
,
141
150
(
2015
).
66.
K.
Inthavong
,
P.
Das
,
N.
Singh
, and
J.
Sznitman
, “
In silico approaches to respiratory nasal flows: A review
,”
J. Biomech.
97
,
109434
(
2019
).
67.
A. R.
Prisco
,
A.
Aliseda
,
J. A.
Beckman
,
N. A.
Mokadam
,
C.
Mahr
, and
G. J. M.
Garcia
, “
Impact of LVAD implantation site on ventricular blood stagnation
,”
ASAIO J.
63
,
392
400
(
2017
).
68.
V. L.
Rayz
,
L.
Boussel
,
L.
Ge
,
J. R.
Leach
,
A. J.
Martin
,
M. T.
Lawton
,
C.
McCulloch
, and
D.
Saloner
, “
Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms
,”
Ann. Biomed. Eng.
38
,
3058
3069
(
2010
).
69.
X.
Tong
,
J.
Dong
,
Y.
Shang
,
K.
Inthavong
, and
J.
Tu
, “
Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity
,”
Comput. Biol. Med.
77
,
40
48
(
2016
).
70.
C.
Gaberino
,
J. S.
Rhee
, and
G. J. M.
Garcia
, “
Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency
,”
Respir. Physiol. Neurobiol.
238
,
23
32
(
2017
).
You do not currently have access to this content.