Due to its biological importance in the fertilization process, the swimming of a solitary spermatozoon has been investigated intensively. However, the elasto-hydrodynamic interactions between spermatozoa remain unclear, and the collective swimming of cells has not been fully clarified. In this study, we numerically investigated pairwise interactions of sperm cells in terms of fluid and solid mechanics. To describe fluid–structure interactions between sperm cells, we developed a boundary element–finite element coupling method. When two sperm cells swim side-by-side, their swimming speed may increase compared to solitary swimming. On the other hand, when two sperm cells swim in line, the front sperm swims faster, while the rear sperm swims slower. To reproduce the experimentally observed flagellar synchronization, we employed a geometric clutch hypothesis and proposed a curvature-associated wave-propagation model. The elasto-hydrodynamic synchronization of flagella resulted in an increase in the swimming speeds of side-by-side sperm cells of up to 16%, indicating that elasto-hydrodynamic synchronization is beneficial for cells in terms of swimming speed. The results clarify the fluid–structure interactions of flagellar mechanics and are important in understanding the collective swimming of spermatozoa.

1.
T.
Ishikawa
,
H.
Ueno
,
T.
Omori
, and
K.
Kikuchi
, “
Cilia and centrosomes: Ultrastructural and mechanical perspectives
,”
Semin. Cell Dev. Biol.
(published online,
2020
).
2.
T.
Omori
,
H.
Sugai
,
Y.
Imai
, and
T.
Ishikawa
, “
Nodal cilia-driven flow: Development of a computational model of the nodal cilia axoneme
,”
J. Biomech.
61
,
242
249
(
2017
).
3.
S. E.
Spagnolie
and
E.
Lauga
, “
The optimal elastic flagellum
,”
Phys. Fluids
22
(
3
),
031901
(
2010
).
4.
J.
Lin
,
K.
Okada
,
M.
Raytchev
,
M. C.
Smith
, and
D.
Nicastro
, “
Structural mechanism of the dynein power stroke
,”
Nat. Cell Biol.
16
,
479
485
(
2014
).
5.
C. B.
Lindemann
, “
Geometric clutch model version 3: The role of the inner and outer arm dyneins in the ciliary beat
,”
Cell Motil.
52
,
242
245
(
2002
).
6.
R. H.
Dillon
and
L. J.
Fauci
, “
An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating
,”
J. Theor. Biol.
207
,
415
430
(
2000
).
7.
R. E.
Goldstein
,
E.
Lauga
,
A. I.
Pesci
, and
M. R. E.
Proctor
, “
Elastohydrodynamic synchronization of adjacent beating flagella
,”
Phys. Rev. Fluids
1
,
073201
(
2016
).
8.
T.
Omori
,
M.
Lu
, and
T.
Ishikawa
, “
Elastohydrodynamic phase-lock in two rotating cilia
,”
J. Biomech. Sci. Eng.
13
,
17
00647
(
2018
).
9.
E.
Jens
and
G.
Gompper
, “
Emergence of metachronal waves in cilia arrays
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
4470
4475
(
2013
).
10.
E. A.
Gaffney
,
H.
Gadêlha
,
D. J.
Smith
,
J. R.
Blake
, and
J. C.
Kirkman-Brown
, “
Mammalian sperm motility: Observation and theory
,”
Annu. Rev. Fluid Mech.
43
(
1
),
501
528
(
2011
).
11.
L. J.
Fauci
and
R.
Dillon
, “
Biofluidmechanics of reproduction
,”
Annu. Rev. Fluid Mech.
38
(
1
),
371
394
(
2006
).
12.
K.
Ishimoto
,
H.
Gadêlha
,
E. A.
Gaffney
,
D. J.
Smith
, and
J.
Kirkman-Brown
, “
Coarse-graining the fluid flow around a human sperm
,”
Phys. Rev. Lett.
118
,
124501
(
2017
).
13.
L. J.
Fauci
and
A.
McDonald
, “
Sperm motility in the presence of boundaries
,”
Bull. Math. Biol.
57
(
5
),
679
699
(
1995
).
14.
P.
Denissenko
,
V.
Kantsler
,
D. J.
Smith
, and
J.
Kirkman-Brown
, “
Human spermatozoa migration in microchannels reveals boundary-following navigation
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
21
),
8007
8010
(
2012
).
15.
D. J.
Smith
,
E. A.
Gaffney
,
J. R.
Blake
, and
J. C.
Kirkman-Brown
, “
Human sperm accumulation near surfaces: A simulation study
,”
J. Fluid Mech.
621
,
289
320
(
2009
).
16.
V.
Kantsler
,
J.
Dunkel
,
M.
Blayney
, and
R. E.
Goldstein
, “
Rheotaxis facilitates upstream navigation of mammalian sperm cells
,”
eLife
3
,
e02403
(
2014
).
17.
K.
Ishimoto
and
E. A.
Gaffney
, “
Fluid flow and sperm guidance: A simulation study of hydrodynamic sperm rheotaxis
,”
J. R. Soc. Interface
12
(
106
),
20150172
(
2015
).
18.
T.
Omori
and
T.
Ishikawa
, “
Upward swimming of a sperm cell in shear flow
,”
Phys. Rev. E
93
,
032402
(
2016
).
19.
B. M.
Friedrich
,
I. H.
Riedel-Kruse
,
J.
Howard
, and
F.
Jülicher
, “
High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory
,”
J. Exp. Biol.
213
(
8
),
1226
1234
(
2010
).
20.
T.
Omori
and
T.
Ishikawa
, “
Swimming of spermatozoa in a Maxwell fluid
,”
Micromachine
10
,
78
(
2019
).
21.
J. F.
Jikeli
,
L.
Alvarez
,
B. M.
Friedrich
,
L. G.
Wilson
,
R.
Pascal
,
R.
Colin
,
M.
Pichlo
,
A.
Rennhack
,
C.
Brenker
, and
U.
Benjamin Kaupp
, “
Sperm navigation along helical paths in 3D chemoattractant landscapes
,”
Nat. Commun.
6
,
7985
(
2015
).
22.
D. M.
Woolley
,
R. F.
Crockett
,
W. D. I.
Groom
, and
S. G.
Revell
, “
A study of synchronisation between the flagella of bull spermatozoa, with related observations
,”
J. Exp. Biol.
212
(
14
),
2215
2223
(
2009
).
23.
Y.
Yang
,
J.
Elgeti
, and
G.
Gompper
, “
Cooperation of sperm in two dimensions: Synchronization, attraction, and aggregation through hydrodynamic interactions
,”
Phys. Rev. E
78
,
061903
(
2008
).
24.
H.
Moore
,
K.
Dvoráková
,
N.
Jenkins
, and
W.
Breed
, “
Exceptional sperm cooperation in the wood mouse
,”
Nature
418
,
174
177
(
2002
).
25.
S. F.
Schoeller
and
E. E.
Keaveny
, “
From flagellar undulations to collective motion: Predicting the dynamics of sperm suspensions
,”
J. R. Soc. Interface.
15
(
2018
).
26.
K.
Ishimoto
and
E. A.
Gaffney
, “
Hydrodynamic clustering of human sperm in viscoelastic fluids
,”
Sci. Rep.
8
(
1
),
15600
(
2018
).
27.
C.
Tung
,
C.
Lin
,
B.
Harvey
,
A. G.
Fiore
,
F.
Ardon
,
M.
Wu
, and
S. S.
Suarez
, “
Fluid viscoelasticity promotes collective swimming of sperm
,”
Sci. Rep.
7
,
3152
(
2017
).
28.
M. P. B.
Nagata
,
K.
Endo
,
K.
Ogata
,
K.
Yamanaka
,
J.
Egashira
,
N.
Katafuchi
,
T.
Yamanouchi
,
H.
Matsuda
,
Y.
Goto
,
M.
Sakatani
,
T.
Hojo
,
H.
Nishizono
,
K.
Yotsushima
,
N.
Takenouchi
,
Y.
Hashiyada
, and
K.
Yamashita
, “
Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
14
),
E3087
E3096
(
2018
).
29.
H.
Xu
,
M.
Medina-Sánchez
,
M. F.
Maitz
,
C.
Werner
, and
O. G.
Schmidt
, “
Sperm micromotors for cargo delivery through flowing blood
,”
ACS Nano
14
(
3
),
2982
2993
(
2020
).
30.
B. J.
Walker
,
K.
Ishimoto
, and
E. A.
Gaffney
, “
Pairwise hydrodynamic interactions of synchronized spermatozoa
,”
Phys. Rev. Fluids
4
,
093101
(
2019
).
31.
H.
Ito
,
T.
Omori
, and
T.
Ishikawa
, “
Swimming mediated by ciliary beating: Comparison with a squirmer model
,”
J. Fluid Mech.
874
,
774
796
(
2019
).
32.
S.
Ishijima
,
S.
Oshio
, and
H.
Mohri
, “
Flagellar movement of human spermatozoa
,”
Gamete Research
13
,
185
197
(
1986
).
33.
L.
Koens
and
E.
Lauga
, “
The boundary integral formulation of Stokes flows includes slender-body theory
,”
J. Fluid Mech.
850
,
R1
(
2018
).
34.
S.
Camalet
and
F.
Julicher
, “
Generic aspects of axonemal beating
,”
New J. Phys.
2
,
24-1
24-23
(
2000
).
35.
H.
Gadêlha
,
E. A.
Gaffney
,
D. J.
Smith
, and
J. C.
Kirkman-Brown
, “
Nonlinear instability in flagellar dynamics: A novel modulation mechanism in sperm migration?
,”
J. R. Soc. Interface
7
,
1689
1697
(
2010
).
36.
S.
Ishijima
,
M. S.
Hamaguchi
,
M.
Naruse
,
S. A.
Ishijima
, and
Y.
Hamaguchi
, “
Rotational movement of a spermatozoon around its long axis
,”
J. Exp. Biol.
163
,
15
31
(
1992
).
37.
J.
Simons
,
L.
Fauci
, and
R.
Cortez
, “
A fully three-dimensional model of the interaction of driven elastic filaments in a Stokes flow with applications to sperm motility
,”
J. Biomech.
48
,
1639
1651
(
2015
).
38.
K.
Kikuchi
,
T.
Haga
,
K.
Numayama-Tsuruta
,
H.
Ueno
, and
T.
Ishikawa
, “
Effect of fluid viscosity on the cilia-generated flow on a mouse tracheal lumen
,”
Ann. Biomed. Eng.
45
,
1048
1057
(
2017
).
You do not currently have access to this content.