Vacuum suction units are widely used in various manufacturing lines, climbing robots, etc. Their most difficult problem is vacuum leakage, which leads to suction failure. Vacuum leakage is traditionally prevented by blocking the flow path between the atmosphere and the vacuum zone, which is difficult for a suction unit working on a rough surface. This paper proposes using the zero pressure difference (ZPD) method, which is based on a completely different mechanism. The ZPD method eliminates the pressure difference at the boundary of the vacuum zone, so vacuum leakage can be prevented regardless of the roughness of the working surface. A new vacuum suction unit based on the ZPD method was designed, fabricated, and tested. The ZPD suction unit forms a rotating water layer on the periphery of the vacuum zone, and the resulting inertial force generates a steep pressure gradient so that a high vacuum is maintained at the center of the vacuum zone while the pressure at the boundary remains equal to the atmospheric pressure. Experiments showed that a 0.8-kg ZPD suction unit generated a suction force of over 245 N on rough surfaces with a power consumption of less than 400 W. In contrast, a traditional suction unit of the same size would need a vacuum pump consuming several kilowatts and weighing dozens of kilograms to generate a similar suction force because of severe vacuum leakage. The ZPD suction unit was then successfully applied to a robotic arm, wall-climbing robot, and spider-man wall-climbing device.

1.
F.
Tache
,
W.
Fischer
,
G.
Caprari
,
R.
Siegwart
,
R.
Moser
, and
F.
Mondada
, “
Magnebike: A magnetic wheeled robot with high mobility for inspecting complex-shaped structures
,”
J. Field Rob.
26
(
5
),
453
476
(
2009
).
2.
M.
Tavakoli
,
C.
Viegas
,
L.
Marques
,
J.
Norberto Pires
, and
A. T.
de Almeida
, “
OmniClimbers: Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures
,”
Rob. Auton. Syst.
61
(
9
),
997
1007
(
2013
).
3.
D.
Roy
, “
Development of novel magnetic grippers for use in unstructured robotic workspace
,”
Rob. Comput.-Integr. Manuf.
35
,
16
41
(
2015
).
4.
H.
Wang
and
A.
Yamamoto
, “
Analyses and solutions for the buckling of thin and flexible electrostatic inchworm climbing robots
,”
IEEE Trans. Rob.
33
(
4
),
889
900
(
2017
).
5.
S. D.
de Rivaz
,
B.
Goldberg
,
N.
Doshi
,
K.
Jayaram
,
J.
Zhou
, and
R. J.
Wood
, “
Inverted and vertical climbing of a quadrupedal microrobot using electroadhesion
,”
Sci. Rob.
3
(
25
),
eaau3038
(
2018
).
6.
G.
Gu
,
J.
Zou
,
R.
Zhao
,
X.
Zhao
, and
X.
Zhu
, “
Soft wall-climbing robots
,”
Sci. Rob.
3
(
25
),
eaat2874
(
2018
).
7.
K.
Autumn
,
Y. A.
Liang
,
S. T.
Hsieh
,
W.
Zesch
,
W. P.
Chan
,
T. W.
Kenny
,
R.
Fearing
, and
R. J.
Full
, “
Adhesive force of a single gecko foot-hair
,”
Nature
405
(
6787
),
681
685
(
2000
).
8.
K.
Autumn
,
A.
Dittmore
,
D.
Santos
,
M.
Spenko
, and
M.
Cutkosky
, “
Frictional adhesion: A new angle on gecko attachment
,”
J. Exp. Biol.
209
(
18
),
3569
3579
(
2006
).
9.
S.
Kim
,
M.
Spenko
,
S.
Trujillo
,
B.
Heyneman
,
D.
Santos
, and
M. R.
Cutkosky
, “
Smooth vertical surface climbing with directional adhesion
,”
IEEE Trans. Rob.
24
(
1
),
65
74
(
2008
).
10.
M. P.
Murphy
,
C.
Kute
,
Y.
Menguec
, and
M.
Sitti
, “
Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives
,”
Int. J. Rob. Res.
30
(
1
),
118
133
(
2011
).
11.
W.
Federle
,
M.
Riehle
,
A. S. G.
Curtis
, and
R. J.
Full
, “
An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants
,”
Integr. Comp. Biol.
42
(
6
),
1100
1106
(
2002
).
12.
C. J.
Clemente
and
W.
Federle
, “
Pushing versus pulling: Division of labour between tarsal attachment pads in cockroaches
,”
Proc. R. Soc. B
275
(
1640
),
1329
1336
(
2008
).
13.
Y.
Wang
,
X.
Yang
,
Y.
Chen
,
D. K.
Wainwright
,
C. P.
Kenaley
,
Z.
Gong
,
Z.
Liu
,
H.
Liu
,
J.
Guan
,
T.
Wang
,
J. C.
Weaver
,
R. J.
Wood
, and
L.
Wen
, “
A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish
,”
Sci. Rob.
2
(
10
),
eaan8072
(
2017
).
14.
R.
Kolluru
,
K. P.
Valavanis
,
A.
Steward
, and
M. J.
Sonnier
, “
A flat surface robotic gripper for handling limp material
,”
IEEE Rob. Autom. Mag.
2
(
3
),
19
26
(
1995
).
15.
R.
Kolluru
,
K. P.
Valavanis
, and
T. M.
Hebert
, “
Modeling, analysis, and performance evaluation of a robotic gripper system for limp material handling
,”
IEEE Trans. Syst. Man Cybern. Part B-Cybern.
28
(
3
),
480
486
(
1998
).
16.
Efficient robotic packing speeds soft drinks manufacture
,”
Indus. Rob.
29
(
3
),
272
274
(
2002
).
17.
C.
McKeown
and
P.
Webb
, “
A reactive reconfigurable tool for aerospace structures
,”
Assem. Autom.
31
(
4
),
334
343
(
2011
).
18.
S.
Yu
and
M.
Gil
, “
Manipulator handling device for assembly of large-size panels
,”
Assem. Autom.
32
(
4
),
361
372
(
2012
).
19.
M.
Monta
,
N.
Kondo
, and
K. C.
Ting
, “
End-effectors for tomato harvesting robot
,”
Artif. Intell. Rev.
12
(
1-3
),
11
25
(
1998
).
20.
C.
Blanes
,
V.
Cortes
,
C.
Ortiz
,
M.
Mellado
, and
P.
Talens
, “
Non-destructive assessment of mango firmness and ripeness using a robotic gripper
,”
Food Bioprocess Technol.
8
(
9
),
1914
1924
(
2015
).
21.
K.
Tanigaki
,
T.
Fujiura
,
A.
Akase
, and
J.
Imagawa
, “
Cherry-harvesting robot
,”
Comput. Electron. Agric.
63
(
1
),
65
72
(
2008
).
22.
P.
Gan
, “
A novel liver retractor for reduced or single-port laparoscopic surgery
,”
Surg. Endoscopy
28
(
1
),
331
335
(
2014
).
23.
P.
Gan
and
J.
Bingham
, “
A clinical study of the LiVac laparoscopic liver retractor system
,”
Surg. Endoscopy
30
(
2
),
789
796
(
2016
).
24.
J.
Kim
,
Y.
Nakajima
, and
K.
Kobayashi
, “
A suction-fixing, stiffness-tunable liver manipulator for laparoscopic surgeries
,”
IEEE-ASME Trans. Mechatron.
23
(
1
),
262
273
(
2018
).
25.
J. A.
Zhu
,
D.
Sun
, and
S. K.
Tso
, “
Application of a service climbing robot with motion planning and visual sensing
,”
J. Rob. Syst.
20
(
4
),
189
199
(
2003
).
26.
H. X.
Zhang
,
J. W.
Zhang
, and
G. H.
Zong
, “
Requirements of glass cleaning and development of climbing robot systems
,” in
Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation
(
IEEE
,
2004
), pp.
101
106
.
27.
Z.-Y.
Qian
,
Y.-Z.
Zhao
,
Z.
Fu
, and
Q.-X.
Cao
, “
Design and realization of a non-actuated glass-curtain wall-cleaning robot prototype with dual suction cups
,”
Int. J. Adv. Manuf. Technol.
30
(
1-2
),
147
155
(
2006
).
28.
G.
La Rosa
,
M.
Messina
,
G.
Muscato
, and
R.
Sinatra
, “
A low-cost lightweight climbing robot for the inspection of vertical surfaces
,”
Mechatronics
12
(
1
),
71
96
(
2002
).
29.
C.
Balaguer
,
A.
Gimenez
, and
M.
Abderrahim
, “
ROMA robots for inspection of steel based infrastructures
,”
Indus. Rob.
29
(
3
),
246
251
(
2002
).
30.
C.
Hillenbrand
,
D.
Schmidt
, and
K.
Berns
, “
CROMSCI: Development of a climbing robot with negative pressure adhesion for inspections
,”
Indus. Robot Int. J.
35
(
3
),
228
237
(
2008
).
31.
R. A.
Kumar
and
G.
Rajesh
, “
Flow transients in un-started and started modes of vacuum ejector operation
,”
Phys. Fluids
28
(
5
),
056105
(
2016
).
32.
R. A.
Kumar
and
G.
Rajesh
, “
Physics of vacuum generation in zero-secondary flow ejectors
,”
Phys. Fluids
30
(
6
),
066102
(
2018
).
33.
Y. Z.
Zhao
,
Z.
Fu
,
Q. X.
Cao
, and
Y.
Wang
, “
Development and applications of wall-climbing robots with a single suction cup
,”
Robotica
22
,
643
648
(
2004
).
34.
D.
Longo
and
G.
Muscato
, “
The Alicia(3) climbing robot
,”
IEEE Rob. Autom. Mag.
13
(
1
),
42
50
(
2006
).
35.
I. M.
Koo
,
T.
Tran Duc
,
Y. H.
Lee
,
H.
Moon
,
J.
Koo
,
S. K.
Park
, and
H. R.
Choi
, “
Development of wall climbing robot system by using impeller type Adhesion mechanism
,”
J. Intell. Rob. Syst.
72
(
1
),
57
72
(
2013
).
36.
X.
Li
and
L.
Dong
, “
Development and analysis of an electrically activated sucker for handling workpieces with rough and uneven surfaces
,”
IEEE-ASME Trans. Mechatron.
21
(
2
),
1024
1034
(
2016
).
37.
X.
Li
and
T.
Kagawa
, “
Development of a new noncontact gripper using swirl vanes
,”
Rob. Comput. Integr. Manuf.
29
(
1
),
63
70
(
2013
).
38.
X.
Li
,
M.
Horie
, and
T.
Kagawa
, “
Pressure-distribution methods for estimating lifting force of a swirl gripper
,”
IEEE-ASME Trans. Mechatron.
19
(
2
),
707
718
(
2014
).
39.
H.
Schlichting
,
Boundary-Layer Theory
, 6th ed. (
McGraw-Hill
,
1968
).
40.
B. R.
Munson
,
D. F.
Young
,
T. H.
Okiishi
, and
W. W.
Huebsch
,
Fundamentals of Fluid Mechanics
, 6th ed. (
John Wiley & Sons
,
2009
).
41.
S.
Raayai-Ardakani
and
G. H.
McKinley
, “
Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows
,”
Phys. Fluids
29
(
9
),
093605
(
2017
).
42.
M. S.
Naim
and
M. F.
Baig
, “
Turbulent drag reduction in Taylor-Couette flows using different super-hydrophobic surface configurations
,”
Phys. Fluids
31
(
9
),
095108
(
2019
).
43.
M. J.
Spenko
,
G. C.
Haynes
,
J. A.
Saunders
,
M. R.
Cutkosky
,
A. A.
Rizzi
,
R. J.
Full
, and
D. E.
Koditschek
, “
Biologically inspired climbing with a hexapedal robot
,”
J. Field Rob.
25
(
4-5
),
223
242
(
2008
).
44.
E. W.
Hawkes
,
E. V.
Eason
,
D. L.
Christensen
, and
M. R.
Cutkosky
, “
Human climbing with efficiently scaled gecko-inspired dry adhesives
,”
J. R. Soc., Interface
12
(
102
),
20140675
(
2015
).

Supplementary Material

You do not currently have access to this content.