We numerically investigate the rheological response of a noncoalescing multiple emulsion under a symmetric shear flow. We find that the dynamics significantly depends on the magnitude of the shear rate and on the number of the encapsulated droplets, two key parameters whose control is fundamental to accurately select the resulting nonequilibrium steady states. The double emulsion, for instance, attains a static steady state in which the external droplet stretches under flow and achieves an elliptical shape (closely resembling the one observed in a sheared isolated fluid droplet), while the internal one remains essentially unaffected. Novel nonequilibrium steady states arise in a multiple emulsion. Under low/moderate shear rates, for instance, the encapsulated droplets display a nontrivial planetarylike motion that considerably affects the shape of the external droplet. Some features of this dynamic behavior are partially captured by the Taylor deformation parameter and the stress tensor. Besides a theoretical interest on its own, our results can potentially stimulate further experiments, as most of the predictions could be tested in the lab by monitoring droplets’ shapes and position over time.

1.
K. J.
Lissant
,
Emulsions and Technology
(
Marcel Dekker
,
New York
,
1974
), Vol. 6.
2.
A. Y.
Kahn
,
S.
Talegaonkar
,
Z.
Iqbal
,
F. J.
Ahmend
, and
R. K.
Khar
, “
Multiple emulsions: An overview
,”
Curr. Drug Delivery
3
,
4
(
2006
).
3.
S. S.
Datta
,
A.
Abbaspourrad
,
E.
Amstad
,
J.
Fan
,
S. H.
Kim
,
M.
Romanowsky
,
H. C.
Shum
,
B.
Sun
,
A. S.
Utada
,
M.
Windbergs
,
S.
Zhou
, and
D. A.
Weitz
, “
25th anniversary article: Double emulsion templated solid microcapsules: Mechanics and controlled release
,”
Adv. Mater.
26
,
2205
(
2014
).
4.
G. T.
Vladisavljevic
,
R.
Al Nuumani
, and
S. A.
Nabavi
, “
Microfluidic production of multiple emulsions
,”
Micromachines
8
,
75
(
2017
).
5.
L. Y.
Chu
,
A. S.
Utada
,
R. K.
Shah
,
J. W.
Kim
, and
D. A.
Weitz
, “
Controllable monodisperse multiple emulsions
,”
Angew. Chem., Int. Ed.
46
,
8970
(
2007
).
6.
P. S.
Clegg
,
J. W.
Tavacoli
, and
P. J.
Wilde
, “
One-step production of multiple emulsions: Microfluidic, polymer-stabilized and particle-stabilized approaches
,”
Soft Matter
12
,
998
(
2016
).
7.
E.
Dluska
,
A.
Markowska-Radomska
,
A.
Metera
,
B.
Tudek
, and
K.
Kosicki
, “
Multiple emulsions as effective platforms for controlled anti-cancer drug delivery
,”
Nanomedicine
12
(
18
),
2183
(
2017
).
8.
M.
Azarmanesh
,
S.
Bawazeer
,
A. A.
Mohamad
, and
A.
Sanati-Nezhad
, “
Rapid and highly controlled generation of monodisperse multiple emulsions via a one-step hybrid microfluidic device
,”
Sci. Rep.
9
,
12694
(
2019
).
9.
J. H.
Xu
,
S. W.
Li
,
J.
Tan
,
Y. J.
Wang
, and
G. S.
Luo
, “
Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device
,”
Langmuir
22
,
7943
7946
(
2006
).
10.
J.
Santos
,
L. A.
Trujillo-Cayado
,
N.
Calero
,
M. C.
Alfaro
, and
J.
Munoz
, “
Development of eco-friendly emulsions produced by microfluidization technique
,”
J. Ind. Eng. Chem.
36
,
90
95
(
2016
).
11.
S.
Ding
,
C. A.
Serra
,
T. F.
Vandamme
,
W.
Yu
, and
N.
Anton
, “
Double emulsions prepared by two-step emulsification: History, state-of-the-art and perspective
,”
J. Controlled Release
295
,
31
(
2019
).
12.
M.
Azarmanesh
,
M.
Farhadi
, and
P.
Azizian
, “
Double emulsion formation through hierarchical flow-focusing microchannel
,”
Phys. Fluids
28
,
032005
(
2016
).
13.
A. S.
Utada
,
E.
Lorenceau
,
D. R.
Link
,
P. D.
Kaplan
,
H. A.
Stone
, and
D. A.
Weitz
, “
Monodisperse double emulsions generated from a microcapillary device
,”
Science
308
,
537
541
(
2005
).
14.
A. R.
Abate
and
D. A.
Weitz
, “
High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics
,”
Small
5
,
2030
2032
(
2009
).
15.
L. D.
Zarzar
,
V.
Sresht
,
E. M.
Sletten
,
J. A.
Kalow
,
D.
Blankschtein
, and
T. M.
Swager
, “
Dynamically reconfigurable complex emulsions via tunable interfacial tensions
,”
Nature
518
,
520
524
(
2015
).
16.
T. Y.
Lee
,
T. M.
Choi
,
T. S.
Shim
,
R. A.
Frijns
, and
S.-H.
Kim
, “
Microfluidic production of multiple emulsions and functional microcapsules
,”
Lab Chip
16
,
3415
(
2016
).
17.
S.
Cohen
,
T.
Yoshioka
,
M.
Lucarelli
,
L. H.
Hwang
, and
R.
Langer
, “
Controlled delivery systems for proteins based on poly (lactic/glycolic acid) microspheres
,”
Pharm. Res.
8
,
713
720
(
1991
).
18.
C.
Laugel
,
P.
Rafidison
,
G.
Potard
,
L.
Aguadisch
, and
A.
Baillet
, “
Modulated release of triterpenic compounds from a O/W/O multiple emulsion formulated with dimethicones: Infrared spectrophotometric and differential calorimetric approaches
,”
J. Controlled Release
63
,
7
17
(
2000
).
19.
R.
Cortesi
,
E.
Esposito
,
G.
Luca
, and
C.
Nastruzzi
, “
Production of lipospheres as carriers for bioactive compounds
,”
Biomaterials
23
,
2283
2294
(
2002
).
20.
A.
Lamprecht
,
H.
Yamamoto
,
H.
Takeuchi
, and
Y.
Kawashima
, “
pH-sensitive microsphere delivery increases oral bioavailability of calcitonin
,”
J. Controlled Release
98
,
1
9
(
2004
).
21.
H. K.
Kim
and
T. G.
Park
, “
Comparative study on sustained release of human growth hormone from semi-crystalline poly (l-lactic acid) and amorphous poly (d,l-lactic-co-glycolic acid) microspheres: Morphological effect on protein release
,”
J. Controlled Release
98
,
115
125
(
2004
).
22.
M.
Maeki
,
Microfluidics for Pharmaceutical Applications
(
Elsevier
,
2019
), Chap. 4.
23.
H.
Chen
,
Y.
Zhao
,
Y.
Song
, and
L.
Jiang
, “
One-step multicomponent encapsulation by compound-fluidic electrospray
,”
J. Am. Chem. Soc.
130
,
7800
7801
(
2008
).
24.
J.
Lahann
, “
Recent progress in nano-biotechnology: Compartmentalized micro-and nanoparticles via electrohydrodynamic co-jetting
,”
Small
7
,
1149
1156
(
2011
).
25.
C.-X.
Zhao
, “
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery
,”
Adv. Drug Delivery Rev.
65
,
1420
1446
(
2013
).
26.
S.
Kim
,
K.
Kim
, and
S. Q.
Choi
, “
Controllable one-step double emulsion formation via phase inversion
,”
Soft Matter
14
,
1094
(
2018
).
27.
G.
Muschiolik
and
E.
Dickinson
, “
Double emulsions relevant to food systems: Preparation, stability, and applications
,”
Compr. Rev. Food Sci. Food Saf.
16
,
532
(
2017
).
28.
W.
Zhang
,
S.
Zhao
,
W.
Rao
,
J.
Snyder
,
J. K.
Choi
,
J.
Wang
,
I. A.
Khan
,
N. B.
Saleh
,
P. J.
Mohler
,
J.
Yu
,
T.
J Hund
,
C.
Tang
, and
X.
He
, “
A novel core-shell microcapsule for encapsulation and 3D culture of embryonic stem cells
,”
J. Mater. Chem. B
1
,
1002
1009
(
2013
).
29.
B.
Cai
,
T.-T.
Ji
,
N.
Wang
,
X.-B.
Li
,
R.-X.
He
,
W.
Liu
,
G.
Wang
,
X.-Z.
Zhao
,
L.
Wang
, and
Z.
Wang
, “
A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells
,”
Lab Chip
19
,
422
(
2019
).
30.
C.-H.
Choi
,
H.
Wang
,
H.
Lee
,
J. H.
Kim
,
L.
Zhang
,
A.
Mao
,
D. J.
Mooney
, and
D. A.
Weitz
, “
One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell
,”
Lab Chip
16
,
1549
(
2016
).
31.
K. K.
Brower
,
C.
Carswell-Crumpton
,
S.
Klemm
,
B.
Cruz
,
G.
Kim
,
S. G. K.
Calhoun
,
L.
Nichols
, and
P. M.
Fordyce
, e-print bioRxiv:10.1101/803460v1 (
2019
).
32.
N. N.
Li
and
A. L.
Shrier
, “
Liquid membrane water treating
,”
Recent Dev. Sep. Sci.
1
,
163
(
2018
).
33.
F.
Leal-Calderon
,
J.
Bibette
, and
V.
Schmitt
,
Emulsion Science:Basic Principles
(
Springer
,
2007
).
34.
V.
Muguet
,
M.
Seiller
,
G.
Barratt
,
O.
Ozer
,
J. P.
Marty
, and
J. L.
Grossiord
, “
Formulation of shear rate sensitive multiple emulsions
,”
J. Controlled Release
70
,
37
49
(
2001
).
35.
M.-H.
Lee
,
S.-G.
Oh
,
S.-K.
Moon
, and
S.-Y.
Bae
, “
Preparation of silica particles encapsulating retinol using O/W/O multiple emulsions
,”
J. Colloid Interface Sci.
240
,
83
89
(
2001
).
36.
D.-H.
Lee
,
Y.-M.
Goh
,
J.-S.
Kim
,
H.-K.
Kim
,
H.-H.
Kang
,
K.-D.
Suh
, and
J.-W.
Kim
, “
Effective formation of silicone-in-fluorocarbon-in-water double emulsions: Studies on droplet morphology and stability
,”
J. Dispersion Sci. Technol.
23
,
491
497
(
2002
).
37.
M. M.
Rieger
and
L. D.
Rhein
,
Surfactants in Cosmetics
(
Marcel Dekker Inc.
,
New York
,
2017
).
38.
S.
Nafisi
and
H.
Maibach
,
Nanotechnology in Cosmetics
(
Elsevier
,
2017
), Chap. 22.
39.
A.
Edris
and
B.
Bergnståhl
, “
Encapsulation of orange oil in a spray dried double emulsion
,”
Nahrung/Food
45
,
133
137
(
2001
).
40.
A.
Benichou
,
A.
Aserin
, and
N.
Garti
, “
Double emulsions stabilized by new molecular recognition hybrids of natural polymers
,”
Polym. Adv. Technol.
13
,
1019
1031
(
2002
).
41.
A.
Benichou
,
A.
Aserin
, and
N.
Garti
, “
Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters
,”
Adv. Colloid Interface Sci.
108-109
,
29
(
2004
).
42.
A. K. L.
Oppermann
,
L. C.
Verkaaik
,
M.
Stieger
, and
E.
Scholten
, “
Influence of double (w1/o/w2) emulsion composition on lubrication properties
,”
Food Funct.
8
,
522
(
2017
).
43.
S.
Omi
,
K.
Katami
,
T.
Taguchi
,
K.
Kaneko
, and
M.
Iso
, “
Synthesis of uniform pmma microspheres employing modified SPG (shirasu porous glass) emulsification technique
,”
J. Appl. Polym. Sci.
57
,
1013
(
2003
).
44.
L. Y.
Chu
,
R.
Xie
,
J. H.
Zhu
,
W. M.
Chen
,
T.
Yamaguchi
, and
S. I.
Nakao
, “
Study of SPG membrane emulsification processes for the preparation of monodisperse core-shell microcapsules
,”
J. Colloid Interface Sci.
265
,
187
(
2003
).
45.
R.
Alex
and
R.
Bodmeier
, “
Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. effect of process and formulation variables on drug entrapment
,”
J. Microencapsulation
7
,
347
(
1990
).
46.
S.-H.
Kim
and
D. A.
Weitz
, “
One-step emulsification of multiple concentric shells with capillary microfluidic devices
,”
Angew. Chem., Int. Ed.
50
,
8731
8734
(
2011
).
47.
X. C. i.
Solvas
and
A.
deMello
, “
Droplet microfluidics: Recent developments and future applications
,”
Chem. Commun.
47
,
1936
1942
(
2011
).
48.
D.
Saeki
,
S.
Sugiura
,
T.
Kanamori
,
S.
Sato
, and
S.
Ichikawa
, “
Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer
,”
Lab Chip
10
,
357
(
2010
).
49.
B.
Dollet
,
A.
Scagliarini
, and
M.
Sbragaglia
, “
Two-dimensional plastic flow of foams and emulsions in a channel: Experiments and lattice Boltzmann simulations
,”
J. Fluid Mech.
766
,
556
(
2015
).
50.
L.
Derzsi
,
D.
Filippi
,
G.
Mistura
,
M.
Pierno
,
M.
Lulli
,
M.
Sbragaglia
,
M.
Bernaschi
, and
P.
Garstecki
, “
Fluidization and wall slip of soft glassy materials by controlled surface roughness
,”
Phys. Rev. E
95
,
052602
(
2017
).
51.
M.
Lulli
,
R.
Benzi
, and
M.
Sbragaglia
, “
Metastability at the yield-stress transition in soft glasses
,”
Phys. Rev. X
8
,
021031
(
2018
).
52.
F.
Pelusi
,
M.
Sbragaglia
, and
R.
Benzi
, “
Avalanche statistics during coarsening dynamics
,”
Soft Matter
15
,
4518
(
2019
).
53.
X.
Chen
,
Y.
Liu
, and
M.
Shi
, “
Hydrodynamics of double emulsion droplet in shear flow
,”
Appl. Phys. Lett.
102
,
051609
(
2013
).
54.
Y.
Chen
,
X.
Liu
, and
Y.
Zhao
, “
Deformation dynamics of double emulsion droplet under shear
,”
Appl. Phys. Lett.
106
,
141601
(
2015
).
55.
Y.
Chen
,
L.
Xiangdong
,
Z.
Chengbin
, and
Z.
Yuanjin
, “
Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear
,”
Lab Chip
15
,
1255
1261
(
2015
).
56.
H. A.
Stone
and
L. G.
Leal
, “
Breakup of concentric double emulsion droplets in linear flows
,”
J. Fluid Mech.
211
,
123
156
(
1990
).
57.
Y. Y.
Renardy
and
V.
Cristini
, “
Effect of inertia on drop breakup under shear
,”
Phys. Fluids
13
,
7
(
2001
).
58.
S.
Afkami
,
P.
Yue
, and
Y.
Renardy
, “
A comparison of viscoelastic stress wakes for two-dimensional and three-dimensional Newtonian drop deformations in a viscoelastic matrix under shear
,”
Phys. Fluids
21
,
072106
(
2009
).
59.
J. W.
Ha
and
S. M.
Yang
, “
Fluid dynamics of a double emulsion droplet in an electric field
,”
Phys. Fluids
11
,
1029
(
1999
).
60.
J.
Wang
,
J.
Liu
,
J.
Han
, and
J.
Guan
, “
Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method
,”
Phys. Rev. Lett.
110
,
066001
(
2013
).
61.
K. A.
Smith
,
J. M.
Ottino
, and
M. O.
de la Cruz
, “
Encapsulated drop breakup in shear flow
,”
Phys. Rev. Lett.
93
,
204501
(
2004
).
62.
M.
Foglino
,
A. N.
Morozov
,
O.
Henrich
, and
D.
Marenduzzo
, “
Flow of deformable droplets: Discontinuous shear thinning and velocity oscillations
,”
Phys. Rev. Lett.
119
,
208002
(
2017
).
63.
M.
Foglino
,
A. N.
Morozov
, and
D.
Marenduzzo
, “
Rheology and microrheology of deformable droplet suspensions
,”
Soft Matter
14
,
9361
(
2018
).
64.
S. R.
De Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover
,
New York, NY
,
1984
).
65.
R.
Mueller
,
J. M.
Yeomans
, and
A.
Doostmohammadi
, “
Emergence of active nematic behavior in monolayers of isotropic cells
,”
Phys. Rev. Lett.
122
,
048004
(
2019
).
66.
V. M.
Kendon
,
M. E.
Cates
,
I.
Pagonabarraga
,
J. C.
Desplat
, and
P.
Blandon
, “
Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: A lattice Boltzmann study
,”
J. Fluid Mech.
440
,
147
203
(
2001
).
67.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method
(
Springer International Publishing
,
2017
), Vol. 10, pp.
978
983
.
68.
S.
Succi
,
The Lattice Boltzmann Equation: For Complex States of Flowing Matter
(
Oxford University Press
,
2018
).
69.
R.
Benzi
,
S.
Succi
, and
M.
Vergassola
, “
The lattice Boltzmann equation: Theory and applications
,”
Phys. Rep.
222
,
145
197
(
1992
).
70.
M. R.
Swift
,
E.
Orlandini
,
W. R.
Osborn
, and
J. M.
Yeomans
, “
Lattice Boltzmann simulations of liquid-gas and binary fluid systems
,”
Phys. Rev. E
54
,
5041
(
1996
).
71.
M.
Bernaschi
,
S.
Melchionna
, and
S.
Succi
, “
Mesoscopic simulations at the physics-chemistry-biology interface
,”
Rev. Mod. Phys.
91
,
025004
(
2019
).
72.
A.
Montessori
,
M.
Lauricella
,
N.
Tirelli
, and
S.
Succi
, “
Mesoscale modelling of near-contact interactions for complex flowing interfaces
,”
J. Fluid Mech.
872
,
327
(
2019
).
73.
S.
Ansumali
and
I. V.
Karlin
, “
Kinetic boundary conditions in the lattice Boltzmann method
,”
Phys. Rev. E
66
,
026311
(
2002
).
74.
S.
Ansumali
,
I. V.
Karlin
,
S.
Arcidiacono
,
S.
Abbas
, and
N. I.
Prasianakis
, “
Hydrodynamics beyond Navier-Stokes: Exact solution to the lattice Boltzmann hierarchy
,”
Phys. Rev. Lett.
98
,
124502
(
2007
).
75.
A.
Tiribocchi
,
N.
Stella
,
G.
Gonnella
, and
A.
Lamura
, “
Hybrid lattice Boltzmann model for binary fluid mixtures
,”
Phys. Rev. E
80
,
026701
(
2009
).
76.
G.
Gonnella
,
A.
Lamura
,
A.
Piscitelli
, and
A.
Tiribocchi
, “
Phase separation of binary fluids with dynamic temperature
,”
Phys. Rev. E.
82
,
046302
(
2010
).
77.
G.
Falcucci
,
S.
Ubertini
,
C.
Biscarini
,
S.
Di Francesco
,
D.
Chiappini
,
S.
Palpacelli
,
A.
De Maio
, and
S.
Succi
, “
Lattice Boltzmann methods for multiphase flow simulations across scales
,”
Commun. Comput. Phys.
9
,
269
(
2015
).
78.
Y.
Gan
,
A.
Xu
,
G.
Zhang
, and
S.
Succi
, “
Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects
,”
Soft Matter
11
,
5336
(
2015
).
79.
C.
Denniston
,
D.
Marenduzzo
,
E.
Orlandini
, and
J. M.
Yeomans
, “
Lattice Boltzmann algorithm for three-dimensional liquid-crystal hydrodynamics
,”
Philos. Trans. R. Soc., A
362
,
1745
1754
(
2004
).
80.
T. A.
Wood
,
J. S.
Lintuvuori
,
A. B.
Schofield
,
D.
Marenduzzo
, and
W. C. K.
Poon
, “
A self-quenched defect glass in a colloid-nematic liquid crystal composite
,”
Science
334
,
79
83
(
2011
).
81.
A.
Tiribocchi
,
O.
Henrich
,
J. S.
Lintuvuori
, and
D.
Marenduzzo
, “
Switching hydrodynamics in liquid crystal devices: A simulation perspective
,”
Soft Matter
10
,
4580
4592
(
2014
).
82.
G.
Foffano
,
J. S.
Lintuvuori
,
A.
Tiribocchi
, and
D.
Marenduzzo
, “
The dynamics of colloidal intrusions in liquid crystals: A simulation perspective
,”
Liq. Cryst. Rev.
2
,
1
27
(
2014
).
83.
A.
Tiribocchi
,
M.
Da Re
,
D.
Marenduzzo
, and
E.
Orlandini
, “
Shear dynamics of an inverted nematic emulsion
,”
Soft Matter
12
,
8195
8213
(
2016
).
84.
M. E.
Cates
,
O.
Henrich
,
D.
Marenduzzo
, and
K.
Stratford
, “
Lattice Boltzmann simulations of liquid crystalline fluids: Active gels and blue phases
,”
Soft Matter
5
,
3791
3800
(
2009
).
85.
L. N.
Carenza
,
G.
Gonnella
,
A.
Lamura
,
G.
Negro
, and
A.
Tiribocchi
, “
Lattice Boltzmann methods and active fluids
,”
Eur. Phys. J. E
42
,
81
(
2019
).
86.
B. J.
Bentley
and
L. G.
Leal
, “
An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows
,”
J. Fluid Mech.
167
,
241
283
(
1986
).
87.
S.
Zaleski
,
J.
Li
, and
S.
Succi
, “
Two dimensional Navier-Stokes simulation of deformation and breakup of liquid patches
,”
Phys. Rev. Lett.
75
,
244
(
1995
).
88.
J. M.
Rallison
, “
The deformation of small viscous drops and bubbles in shear flows
,”
Annu. Rev. Fluid Mech.
16
,
45
66
(
1984
).
89.
F. S.
Hakimi
and
W. R.
Schowalter
, “
The effects of shear and vorticity on deformation of a drop
,”
J. Fluid Mech.
98
,
635
645
(
1980
).

Supplementary Material

You do not currently have access to this content.