The turbulent flow of a fluid carrying trace amounts of a condensable species through a differentially cooled vertical channel geometry is simulated using single-phase direct numerical simulations. The release of latent heat during condensation is modeled by interdependent temperature and vapor concentration source terms governing the relation between the removal of excess vapor from the system and the associated local increase in fluid temperature. A coupling between condensation and turbulence is implemented via solutal and thermal buoyancy. When compared to simulations of an identical system without phase transition modeling, the modifications of the subcooled boundary layer due to the transient and highly localized release of latent heat could be observed. A separate analysis of fluid before and after phase transition events shows a clear increase in post-interaction streak spacing, with the release of latent heat during condensation events opposing the cooling effect of the channel wall and the associated damping of turbulence.

1.
L. E.
Herranz
,
M. H.
Anderson
, and
M. L.
Corradini
, “
A diffusion layer model for steam condensation within the AP600 containment
,”
Nucl. Eng. Des.
183
,
133
(
1998
).
2.
R. W.
Bonner
, “
Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination
,”
Int. J. Heat Mass Transfer
61
,
245
(
2013
).
3.
J. G. M.
Kuerten
and
A. W.
Vreman
, “
Effect of droplet interaction on droplet-laden turbulent channel flow
,”
Phys. Fluids
27
,
053304
(
2015
).
4.
F.
Mashayek
, “
Direct numerical simulations of evaporating droplet dispersion in forced low Mach number turbulence
,”
Int. J. Heat Mass Transfer
41
,
2601
(
1998
).
5.
P.
Février
,
O.
Simonin
, and
K.
Squires
, “
Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: Theoretical formalism and numerical study
,”
J. Fluid Mech.
533
,
1
(
2005
).
6.
E.
Masi
,
O.
Simonin
, and
B.
Bédat
, “
The Mesoscopic eulerian approach for evaporating droplets interacting with turbulent flow
,”
Flow, Turbul. Combust.
86
,
563
(
2010
).
7.
E.
Russo
,
J. G. M.
Kuerten
,
C. W. M.
van der Geld
, and
B. J.
Geurts
, “
Water circulation in non-isothermal droplet-laden turbulent channel flow
,”
AIP Conf. Proc.
1558
,
1079
(
2013
).
8.
N.
Kasagi
and
M.
Nishimura
, “
Direct numerical simulation of combined forced and natural turbulent convection in a vertical plane channel
,”
Int. J. Heat Fluid Flow
18
,
88
(
1997
).
9.
P.
Bahavar
and
C.
Wagner
, in
Direct and Large Eddy Simulations XI
, Direct and Large Eddy Simulations XI Vol. 25, edited by
M. V.
Salvetti
,
V.
Armenio
,
J.
Fröhlich
,
B. J.
Geurts
, and
H.
Kuerten
(
Springer
,
Cham
,
2019
), pp.
285
290
, electronic ISBN: 978-3-030-04915-7.
10.
D. D.
Gray
and
A.
Giorgini
, “
The validity of the boussinesq approximation for liquids and gases
,”
Int. J. Heat Mass Transfer
19
,
545
(
1976
).
11.
R. B.
Bird
,
W. E.
Stewart
,
E. N.
Lightfoot
, and
D. J.
Klingenberg
,
Introductory Transport Phenomena
(
Wiley
,
New York
,
2015
), Vol. 1.
12.
A.
Barletta
and
E.
Zanchini
, “
On the choice of the reference temperature for fully-developed mixed convection in a vertical channel
,”
Int. J. Heat Mass Transfer
42
,
3169
(
1999
).
13.
R.
Marek
and
J.
Straub
, “
Analysis of the evaporation coefficient and the condensation coefficient of water
,”
Int. J. Heat Mass Transfer
44
,
39
(
2001
).
14.
C.
Kath
and
C.
Wagner
,
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
(
Springer International Publishing
,
2016
), pp.
515
524
.
15.
A. J.
Chorin
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
,
745
(
1968
).
16.
M.
Vinokur
, “
On one-dimensional stretching functions for finite-difference calculations
,”
J. Comput. Phys.
50
,
215
(
1983
).
17.
E.
Russo
,
J. G. M.
Kuerten
,
C. W. M.
van der Geld
, and
B. J.
Geurts
, “
Water droplet condensation and evaporation in turbulent channel flow
,”
J. Fluid Mech.
749
,
666
(
2014
).
18.
M.
Reeks
, “
The transport of discrete particles in inhomogeneous turbulence
,”
J. Aerosol Sci.
14
,
729
(
1983
).
19.
K.
Akselvoll
and
P.
Moin
, “
Application of the dynamic localization model to large-eddy simulation of turbulent flow over a backward facing step
,” in
ASME FED
(
ASME
,
1993
), Vol. 162, p.
1
.
20.
T. S.
Lund
,
X.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
(
1998
).
21.
M.
Bellec
,
A.
Toutant
, and
G.
Olalde
, “
Large eddy simulations of thermal boundary layer developments in a turbulent channel flow under asymmetrical heating
,”
Comput. Fluids
151
,
159
(
2017
).
22.
E.
De Villiers
, “
The potential of large eddy simulation for the modeling of wall bounded flows
,” Ph.D. thesis,
Imperial College London
,
2006
.
23.
O.
Shishkina
and
C.
Wagner
, “
Stability conditions for the Leapfrog-Euler scheme with central spatial discretization of any order
,”
Appl. Numer. Anal. Comput. Math.
1
,
315
(
2004
).
24.
C. R.
Smith
and
S. P.
Metzler
, “
The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer
,”
J. Fluid Mech.
129
,
27
(
1983
).
25.
T.
Wetzel
and
C.
Wagner
, “
Buoyancy-induced effects on large-scale motions in differentially heated vertical channel flows studied in direct numerical simulations
,”
Int. J. Heat Fluid Flow
75
,
14
(
2019
).
26.
A.
Bukhvostova
,
E.
Russo
,
J. G.
Kuerten
, and
B. J.
Geurts
, “
Comparison of DNS of compressible and incompressible turbulent droplet-laden heated channel flow with phase transition
,”
Int. J. Multiphase Flow
63
,
68
(
2014
).
You do not currently have access to this content.