The modification of dominant coherent structures that extend through the log-region of a drag reduced turbulent boundary layer is studied via examination of two-point correlations from time-resolved particle-image-velocimetry. Measurements were acquired in polymer oceans (uniform concentration) at drag reduction levels corresponding to the low drag reduction regime (<40%) and the high drag reduction (HDR) regime (>40%) and at an intermediate level (46%). The mean velocity profiles and two-point correlations were compared with those of water (Newtonian, DR = 0%). These results show that, with increasing drag reduction, the inclination of these dominant coherent structures decreases, their streamwise extent increases, and the fluctuations in the correlations are suppressed (especially at HDR). These observations are examined in comparison with the coherent structure literature (Newtonian and polymeric).

1.
M. R.
Head
and
P.
Bandyopadhyay
, “
New aspects of turbulent boundary-layer structure
,”
J. Fluid Mech.
107
,
297
338
(
1981
).
2.
T.
Theodorsen
, “
Mechanism of turbulence
,” in
Proceedings of the Second Midwestern Conference on Fluid Mechanics
(
Ohio State University
,
Columbus, OH
,
1952
).
3.
G. L.
Brown
and
A. S.
Thomas
, “
Large structure in a turbulent boundary layer
,”
Phys. Fluids
20
(
10
),
S243
S252
(
1977
).
4.
R.
Deshpande
,
J.
Monty
, and
I.
Marusic
, “
Streamwise inclination angle of large wall-attached structures in turbulent boundary layers
,”
J. Fluid Mech.
877
,
R4
(
2019
).
5.
C. R.
Smith
, “
A synthesized model of the near-wall behavior in turbulent boundary layers
,” in
Proceedings of the 8th Symposium of Turbulence
, edited by
J. L.
Zakin
and
G.
Patterson
(
University of Missouri-Rolla
,
Rolla
,
1984
).
6.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
7.
B.
Jayaraman
and
J. G.
Brasseur
, “
The surprising transition in atmospheric boundary layer turbulence structure from neutral to moderately convective stability states and mechanisms underlying large-scale rolls
,” preprint arXiv:1807.03336 (
2018
).
8.
B. A.
Toms
, “
Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers
,” in
Proceedings of the International Congress on Rheology
(
North-Holland
,
1948
), p.
135
.
9.
G. L.
Donohue
,
W. G.
Tiederman
, and
M. M.
Reischman
, “
Flow visualization of the near-wall region in a drag-reducing channel flow
,”
J. Fluid Mech.
56
(
3
),
559
575
(
1972
).
10.
B. U.
Achia
and
D. W.
Thompson
, “
Structure of the turbulent boundary in drag-reducing pipe flow
,”
J. Fluid Mech.
81
(
3
),
439
464
(
1977
).
11.
W. G.
Tiederman
,
T. S.
Luchik
, and
D. G.
Bogard
, “
Wall-layer structure and drag reduction
,”
J. Fluid Mech.
156
,
419
437
(
1985
).
12.
T. S.
Luchik
and
W. G.
Tiederman
, “
Turbulent structure in low-concentration drag-reducing channel flows
,”
J. Fluid Mech.
190
,
241
263
(
1988
).
13.
D. T.
Walker
and
W. G.
Tiederman
, “
Turbulent structure in a channel flow with polymer injection at the wall
,”
J. Fluid Mech.
218
,
377
403
(
1990
).
14.
T.
Wei
and
W. W.
Willmarth
, “
Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows
,”
J. Fluid Mech.
245
,
619
641
(
1992
).
15.
M. D.
Warholic
,
D. K.
Heist
,
M.
Katcher
, and
T. J.
Hanratty
, “
A study with particle-image velocimetry of the influence of drag-reducing polymers on the structure of turbulence
,”
Exp. Fluids
31
(
5
),
474
483
(
2001
).
16.
S.
Sibilla
and
A.
Baron
, “
Polymer stress statistics in the near-wall turbulent flow of a drag-reducing solution
,”
Phys. Fluids
14
(
3
),
1123
1136
(
2002
).
17.
B.
Gampert
and
C. K.
Yong
, “
The influence of polymer additives on the coherent structure of turbulent channel flow
,” in
Structure of Turbulence and Drag Reduction
(
Springer
,
Berlin, Heidelberg
,
1990
), pp.
223
232
.
18.
S.
Khan
and
B.
Jayaraman
, “
Statistical structure and deviations from equilibrium in wavy channel turbulence
,”
Fluids
4
(
3
),
161
(
2019
).
19.
S.
Shaban
,
M.
Azad
,
J.
Trivedi
, and
S.
Ghaemi
, “
Investigation of near-wall turbulence in relation to polymer rheology
,”
Phys. Fluids
30
,
125111
(
2018
).
20.
Y.
Dubief
,
C. M.
White
,
V. E.
Terrapon
,
E. S.
Shaqfeh
,
P.
Moin
, and
S. K.
Lele
, “
On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows
,”
J. Fluid Mech.
514
,
271
280
(
2004
).
21.
K.
Kim
,
C. F.
Li
,
R.
Sureshkumar
,
S.
Balachandar
, and
R. J.
Adrian
, “
Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow
,”
J. Fluid Mech.
584
,
281
299
(
2007
).
22.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
396
(
1999
).
23.
K.
Kim
and
R.
Sureshkumar
, “
Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows
,”
Phys. Rev. E
87
(
6
),
063002
(
2013
).
24.
M. P.
Escudier
,
S.
Rosa
, and
R. J.
Poole
, “
Asymmetry in transitional pipe flow of drag-reducing polymer solutions
,”
J. Non-Newtonian Fluid Mech.
161
(
1-3
),
19
29
(
2009
).
25.
C. M.
White
,
Y.
Dubief
, and
J.
Klewicki
, “
Re-examining the logarithmic dependence of the mean velocity distribution in polymer drag reduced wall-bounded flow
,”
Phys. Fluids
24
(
2
),
021701
(
2012
).
26.
B. R.
Elbing
,
M.
Perlin
,
D. R.
Dowling
, and
S. L.
Ceccio
, “
Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions
,”
Phys. Fluids
25
(
8
),
085103
(
2013
).
27.
P. S.
Virk
, “
Drag reduction fundamentals
,”
AIChE J.
21
(
4
),
625
656
(
1975
).
28.
J. R.
Elsnab
,
J. P.
Monty
,
C. M.
White
,
M. M.
Koochesfahani
, and
J. C.
Klewicki
, “
High-fidelity measurements in channel flow with polymer wall injection
,”
J. Fluid Mech.
859
,
851
886
(
2019
).
29.
L.
Daniel
, “
Design and installation of a high Reynolds number recirculating water tunnel
,” M.Sc. thesis,
Oklahoma State University
,
2014
.
30.
Y.
Farsiani
and
B. R.
Elbing
, “
Characterization of a custom-designed, high-Reynolds number water tunnel
,” in
Proceedings of the 2016 ASME Fluids Engineering Division Summer Meeting, FEDSM2016-7866, Washington, DC, July 10–14, 2016
(
ASME
,
2016
).
31.
B. R.
Elbing
,
L.
Daniel
,
Y.
Farsiani
, and
C. E.
Petrin
, “
Design and validation of a recirculating, high-Reynolds number water tunnel
,”
J. Fluids Eng.
140
(
8
),
081102
(
2018
).
32.
M.
Acharya
,
J.
Bornstein
, and
M. P.
Escudier
, “
Turbulent boundary layers on rough surfaces
,”
Exp. Fluids
4
(
1
),
33
47
(
1986
).
33.
M. P.
Schultz
, “
The relationship between frictional resistance and roughness for surfaces smoothed by sanding
,”
J. Fluids Eng.
124
(
2
),
492
499
(
2002
).
34.
B.
Wieneke
, “
PIV uncertainty quantification from correlation statistics
,”
Meas. Sci. Technol.
26
(
7
),
074002
(
2015
).
35.
A. A.
Draad
,
G. D. C.
Kuiken
, and
F. T. M.
Nieuwstadt
, “
Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids
,”
J. Fluid Mech.
377
,
267
312
(
1998
).
36.
H. L.
Petrie
,
S.
Deutsch
,
T. A.
Brungart
, and
A. A.
Fontaine
, “
Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow
,”
Exp. Fluids
35
(
1
),
8
23
(
2003
).
37.
Y.
Farsiani
,
Z.
Saeed
, and
B. R.
Elbing
, “
Drag reduction performance of mechanically degraded dilute polyethylene oxide solutions
,” preprint arXiv:1907.07614 (
2019
).
38.
S. A.
Vanapalli
,
M. T.
Islam
, and
M. J.
Solomon
, “
Scission-induced bounds on maximum polymer drag reduction in turbulent flow
,”
Phys. Fluids
17
(
9
),
095108
(
2005
).
39.
B. R.
Elbing
,
M. J.
Solomon
,
M.
Perlin
,
D. R.
Dowling
, and
S. L.
Ceccio
, “
Flow-induced degradation of drag-reducing polymer solutions within a high-Reynolds number turbulent boundary layer
,”
J. Fluid Mech.
670
,
337
364
(
2011
).
40.
M.
Lander
, “
Preparation and characterization of polyethylene-oxide (PEO) solution
,” M.Sc. thesis,
Oklahoma State University
,
2018
.
41.
B. J.
McKeon
, “
Measurement of pressure with wall tappings
,” in
Handbook of Experimental Fluid Mechanics
, edited by
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
(
Springer
,
2007
), pp.
180
184
.
42.
P. S.
Virk
,
E. W.
Merrill
,
H. S.
Mickley
,
K. A.
Smith
, and
E. L.
Mollo-Christensen
, “
The Toms phenomenon: Turbulent pipe flow of dilute polymer solutions
,”
J. Fluid Mech.
30
,
305
328
(
1967
).
43.
P. S.
Virk
, “
Drag reduction in rough pipes
,”
J. Fluid Mech.
45
(
2
),
225
246
(
1971
).
44.
H. J.
Choi
and
M. S.
Jhon
, “
Polymer-induced turbulent drag reduction
,”
Ind. Eng. Chem. Res.
35
(
9
),
2993
2998
(
1996
).
45.
B. H.
Zimm
, “
Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss
,”
J. Chem. Phys.
24
(
2
),
269
278
(
1956
).
46.
F. E.
Bailey
, Jr.
and
R. W.
Callard
, “
Some properties of poly (ethylene oxide)1 in aqueous solution
,”
J. Appl. Polym. Sci.
1
(
1
),
56
62
(
1959
).
47.
I.
Marusic
, “
On the role of large-scale structures in wall turbulence
,”
Phys. Fluids
13
(
3
),
735
743
(
2001
).
48.
J.
Sillero
, “
High Reynolds number turbulent boundary layers
,” Ph.D. thesis,
Universidad Politénica de Madrid
,
2014
.
49.
I.
Marusic
,
J. P.
Monty
,
M.
Hultmark
, and
A. J.
Smits
, “
On the logarithmic region in wall turbulence
,”
J. Fluid Mech.
716
,
R3
(
2013
).
50.
V.
Kulandaivelu
, “
Evolution of zero pressure gradient turbulent boundary layers from different initial conditions
,” Ph.D. thesis,
University of Melbourne
,
2012
.
51.
E. S.
Winkel
,
J. M.
Cutbirth
,
S. L.
Ceccio
,
M.
Perlin
, and
D. R.
Dowling
, “
Turbulence profiles from a smooth flat-plate turbulent boundary layer at high Reynolds number
,”
Exp. Therm. Fluid Sci.
40
,
140
149
(
2012
).
52.
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A. J.
Smits
, “
Turbulent pipe flow at extreme Reynolds numbers
,”
Phys. Rev. Lett.
108
,
094501
(
2012
).
53.
N.
Hutchins
,
K.
Chauhan
,
I.
Marusic
,
J. P.
Monty
, and
J.
Klewicki
, “
Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory
,”
Boundary-Layer Meteorol.
145
(
2
),
273
306
(
2012
).
54.
I.
Marusic
and
W. D.
Heuer
, “
Reynolds number invariance of the structure inclination angle in wall turbulence
,”
Phys. Rev. Lett.
99
(
11
),
114504
(
2007
).
55.
C. D.
Meinhart
and
R. J.
Adrian
, “
On the existence of uniform momentum zones in a turbulent boundary layer
,”
Phys. Fluids
7
(
4
),
694
696
(
1995
).
56.
J. P.
Monty
,
J. A.
Stewart
,
R. C.
Williams
, and
M. S.
Chong
, “
Large-scale features in turbulent pipe and channel flows
,”
J. Fluid Mech.
589
,
147
156
(
2007
).
57.
M.
Mohammadtabar
,
R. S.
Sanders
, and
S.
Ghaemi
, “
Turbulent structures of non-Newtonian solutions containing rigid polymers
,”
Phys. Fluids
29
,
103101
(
2017
).
58.
E. S.
Winkel
,
G.
Oweis
,
S. A.
Vanapalli
,
D. R.
Dowling
,
M.
Perlin
,
M. J.
Solomon
, and
S. L.
Ceccio
, “
High Reynolds number turbulent boundary layer friction drag reduction from wall-injected polymer solutions
,”
J. Fluid Mech.
621
,
259
288
(
2009
).
59.
M. D.
Graham
, “
Drag reduction in turbulent flow of polymer solutions
,”
Rheol. Rev.
2
(
2
),
143
170
(
2004
).
60.
K.
Kim
,
R. J.
Adrian
,
S.
Balachandar
, and
R.
Sureshkumar
, “
Dynamics of hairpin vortices and polymer-induced turbulent drag reduction
,”
Phys. Rev. Lett.
100
(
13
),
134504
(
2008
).
61.
M.
Ebrahimian
,
R. S.
Sanders
, and
S.
Ghaemi
, “
Near-wall motion of inertial particles in a drag-reduced non-Newtonian turbulent flow
,”
Exp. Fluids
60
,
117
(
2019
).
62.
J.
Jiménez
and
A.
Pinelli
, “
The autonomous cycle of near-wall turbulence
,”
J. Fluid Mech.
389
,
335
359
(
1999
).
63.
S. K.
Robinson
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
(
1
),
601
639
(
1991
).
You do not currently have access to this content.