This paper presents a comprehensive experimental study on the unsteady pressure exerted on the surface of a round cylinder in smooth and turbulent flows. A highly instrumented cylinder with several static pressure taps and dynamic pressure transducers at different spanwise and peripheral locations was used, enabling extensive dynamic surface pressure, coherence, and turbulence length-scale analysis. The effects of the free-stream turbulence and turbulent length scale are investigated by placing the turbulent-generating grids within the wind tunnel duct. For both the laminar and turbulent incident flows, the surface pressure results show the emergence of the fundamental, first and second harmonics at most peripheral angles, while at the cylinder base, the surface pressure spectra are dominated by the first harmonic. It has also been observed that an increase in the level of the turbulence intensity results in an increase in the energy level of unsteady pressure acting on the cylinder. An increase in the length scale of the incoming flow structures is shown to result in an increase in the energy level of the tonal frequencies and the broadband content of the surface pressure spectra. The spanwise coherence results have also shown that an increase in the length scale of the flow structures increases the spanwise correlation length of the flow structures at the vortex shedding frequency at the stagnation point, while at the cylinder base, the spanwise correlation length decreases at the vortex shedding frequency.

1.
R.
Maryami
,
M.
Azarpeyvand
,
A.
Dehghan
, and
A.
Afshari
, “
An experimental investigation of the surface pressure fluctuations for round cylinders
,”
J. Fluids Eng.
141
,
061203
(
2019
).
2.
R.
Maryami
,
S. A.
Showkat Ali
,
M.
Azarpeyvand
,
A.
Dehghan
, and
A.
Afshari
, “
Turbulent flow interaction with a circular cylinder
,” AIAA Paper 2019-2503,
2019
.
3.
S. A.
Showkat Ali
,
M.
Azarpeyvand
, and
C. R. I.
da Silva
, “
Trailing-edge flow and noise control using porous treatments
,”
J. Fluid Mech.
850
,
83
119
(
2018
).
4.
R.
Schlinker
and
R.
AMIET
, “
Vortex noise from nonrotating cylinders and airfoils
,” in
14th Aerospace Sciences Meeting
(
AIAA
,
1976
), p.
81
.
5.
S. A.
Showkat Ali
,
M.
Azarpeyvand
,
M.
Szőke
, and
C. R.
Ilário da Silva
, “
Boundary layer flow interaction with a permeable wall
,”
Phys. Fluids
30
,
085111
(
2018
).
6.
G.
West
and
C.
Apelt
, “
Measurements of fluctuating pressures and forces on a circular cylinder
,”
J. Fluids Struct.
7
,
227
244
(
1993
).
7.
S. A.
Showkat Ali
,
M.
Szőke
,
M.
Azarpeyvand
, and
C. R.
Ilario da Silva
, “
Turbulent flow interaction with porous surfaces
,” AIAA Paper 2018-2801,
2018
.
8.
E. Z.
Stowell
and
A. F.
Deming
, “
Vortex noise from rotating cylindrical rods
,”
J. Acoust. Soc. Am.
7
,
190
198
(
1936
).
9.
S. A.
Showkat Ali
,
M.
Azarpeyvand
, and
C. R.
Ilario da Silva
, “
Trailing edge bluntness flow and noise control using porous treatments
,” AIAA Paper 2016-2832,
2016
.
10.
S. A.
Showkat Ali
,
M.
Azarpeyvand
, and
C. R.
Ilario da Silva
, “
Experimental study of porous treatment for aerodynamic and aeroacoustic purposes
,” AIAA Paper 2017-3358,
2017
.
11.
Y.
Oguma
,
T.
Yamagata
, and
N.
Fujisawa
, “
Measurement of sound source distribution around a circular cylinder in a uniform flow by combined particle image velocimetry and microphone technique
,”
J. Wind Eng. Ind. Aerodyn.
118
,
1
11
(
2013
).
12.
S. A.
Showkat Ali
,
X.
Liu
, and
M.
Azarpeyvand
, “
Bluff body flow and noise control using porous media
,” AIAA Paper 2016-2754,
2016
.
13.
M.
Van Dyke
,
An Album of Fluid Motion
(
Parabolic Press Stanford
,
1982
).
14.
Lord Rayleigh
, “
XLVIII. Aeolian tones
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
29
,
433
444
(
1915
).
15.
P.
Bearman
and
T.
Morel
, “
Effect of free stream turbulence on the flow around bluff bodies
,”
Prog. Aerospace Sci.
20
,
97
123
(
1983
).
16.
M. S.
Bloor
, “
The transition to turbulence in the wake of a circular cylinder
,”
J. Fluid Mech.
19
,
290
304
(
1964
).
17.
C.
Norberg
, “
Interaction between freestream turbulence and vortex shedding for a single tube in cross-flow
,”
J. Wind Eng. Ind. Aerodyn.
23
,
501
514
(
1986
).
18.
C.
Norberg
and
B.
Sunden
, “
Turbulence and Reynolds number effects on the flow and fluid forces on a single cylinder in cross flow
,”
J. Fluids Struct.
1
(
3
),
337
357
(
1987
).
19.
N.
Curle
, “
The influence of solid boundaries upon aerodynamic sound
,”
Proc. R. Soc. London, Ser. A
231
,
505
514
(
1955
).
20.
D.
Casalino
and
M.
Jacob
, “
Prediction of aerodynamic sound from circular rods via spanwise statistical modelling
,”
J. Sound Vib.
262
,
815
844
(
2003
).
21.
H.
Fujita
,
H.
Suzuki
,
A.
Sagawa
, and
T.
Takaishi
, “
The Aeolian tone and the surface pressure in high Reynolds number flow
,” in
6th Aeroacoustics Conference and Exhibit
(
AIAA
,
2000
), p.
2002
.
22.
J.
Ackerman
,
J. P.
Gostelow
,
A.
Rona
, and
W. E.
Carscallen
, “
Measurements of fluctuating pressures on a circular cylinder in subsonic cross flow
,”
AIAA J.
47
,
2121
2131
(
2009
).
23.
M. M.
Zdravkovich
,
Flow Around Circular Cylinders: Volume 2: Applications
(
Oxford University Press
,
1997
), Vol. 2.
24.
A.
Garcia-Sagrado
and
T.
Hynes
, “
Wall pressure sources near an airfoil trailing edge under turbulent boundary layers
,”
J. Fluids Struct.
30
,
3
34
(
2012
).
25.
J. B.
Barlow
,
W. H.
Rae
, Jr.
, and
A.
Pope
, “
Low speed wind tunnel testing
,” in
INCAS Bulletin 7
(
Wiley
,
2015
), pp.
133
.
26.
S.
Yavuzkurt
, “
A guide to uncertainty analysis of hot-wire data
,”
ASME, Trans. J. Fluids Eng.
106
,
181
186
(
1984
).
27.
S. J.
Wilkins
and
J. W.
Hall
, “
Experimental investigation of a tandem cylinder system with a yawed upstream cylinder
,”
J. Pressure Vessel Technol.
136
,
011302
(
2014
).
28.
M. C.
Goody
and
R. L.
Simpson
, “
An experimental investigation of pressure fluctuations in three-dimensional turbulent boundary layers
,” Technical Report No. VPI-AOE-268, Virginia Tech.,
1999
.
29.
A.
Afshari
,
M.
Azarpeyvand
,
A. A.
Dehghan
,
M.
Szőke
, and
R.
Maryami
, “
Trailing-edge flow manipulation using streamwise finlets
,”
J. Fluid Mech.
870
,
617
650
(
2019
).
30.
F. V.
Hutcheson
and
T. F.
Brooks
, “
Noise radiation from single and multiple rod configurations
,”
Int. J. Aeroacoustics
11
,
291
333
(
2012
).
31.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis and Measurement Procedures
(
John Wiley & Sons
,
2011
), Vol. 729.
32.
S.
Corrsin
, “
Turbulence: Experimental methods
,”
Handbuch Phys.
3
,
524
590
(
1963
).
33.
P.
Lavoie
,
L.
Djenidi
, and
R. A.
Antonia
, “
Effect of initial conditions on the generation of coherent structures in grid turbulence
,”
J. Fluid Mech.
346
,
201
237
(
2006
).
34.
E.
Laws
and
J.
Livesey
, “
Flow through screens
,”
Annu. Rev. Fluid Mech.
10
,
247
266
(
1978
).
35.
P.
Lavoie
,
P.
Burattini
,
L.
Djenidi
, and
R. A.
Antonia
, “
Effect of initial conditions on decaying grid turbulence at low Rλ
,”
Exp. Fluids
39
,
865
874
(
2005
).
36.
P.
Roach
, “
The generation of nearly isotropic turbulence by means of grids
,”
Int. J. Heat Fluid Flow
8
,
82
92
(
1987
).
37.
M. S.
Mohamed
and
J. C.
LaRue
, “
The decay power law in grid-generated turbulence
,”
J. Fluid Mech.
219
,
195
214
(
1990
).
38.
G.
Comte-Bellot
and
S.
Corrsin
, “
The use of a contraction to improve the isotropy of grid-generated turbulence
,”
J. Fluid Mech.
25
,
657
682
(
1966
).
39.
S.
Ling
and
T.
Huang
, “
Decay of weak turbulence
,”
Phys. Fluids
13
,
2912
2924
(
1970
).
40.
R. J.
Hearst
and
P.
Lavoie
, “
Decay of turbulence generated by a square-fractal-element grid
,”
J. Fluid Mech.
741
,
567
584
(
2014
).
41.
P.
Krogstad
and
P.
Davidson
, “
Freely decaying, homogeneous turbulence generated by multi-scale grids
,”
J. Fluid Mech.
680
,
417
434
(
2011
).
42.
P.
Lavoie
,
L.
Djenidi
, and
R.
Antonia
, “
Effects of initial conditions in decaying turbulence generated by passive grids
,”
J. Fluid Mech.
585
,
395
420
(
2007
).
43.
J.
Hinze
,
Turbulence
(
McGraw-Hill
,
New York
,
1975
), Vol. 218, p.
457
.
44.
C.
Norberg
,
Effects of Reynolds Number and a Low-Intensity Freestream Turbulence on the Flow Around a Circular Cylinder
(
Chalmers University
,
Goteborg, Sweden
;
Technological Publications
,
1987
), Vol. 87, pp.
1
55
.
45.
W. Z.
Sadeh
and
D. B.
Saharon
, “
Turbulence effect on crossflow around a circular cylinder at subcritical Reynolds numbers
,” Technical Report No. 154,
NASA
,
Washington, United States
,
1982
.
46.
E.
Achenbach
, “
Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 × 106
,”
J. Fluid Mech.
34
,
625
639
(
1968
).
47.
I. P.
Castro
and
L.
Watson
, “
Vortex shedding from tapered, triangular plates: Taper and aspect ratio effects
,”
Exp. fluids
37
,
159
167
(
2004
).
48.
S. R.
Snarski
, “
Flow over yawed circular cylinders: Wall pressure spectra and flow regimes
,”
Phys. Fluids
16
,
344
359
(
2004
).
49.
R.
Orselli
,
J.
Meneghini
, and
F.
Saltara
, “
Two and three-dimensional simulation of sound generated by flow around a circular cylinder
,” AIAA Paper 2009-3270,
2009
.
You do not currently have access to this content.