This paper describes the first experimental evidence of the vortex breakdown development in the lower fluid in a sealed vertical cylindrical container in which two immiscible fluids circulate, driven by a rotating lid. The lower fluid is water, and the upper fluid is sunflower oil. In both fluids, the rotation generates centrifugal meridional circulations separated by a thin anticentrifugal circulation layer attached to the interface from below. An advanced technique of particle image velocimetry and proper laser illumination allows for the measurement of velocity and recognition of the patterns of flow in oil and water. As the rotation speeds up, a tornadolike swirling ascending jet forms near the axis-bottom intersection. A circulation cell (vortex-breakdown bubble, VBB) then emerges near the center of the water domain, approaches the bottom, and disappears. This scenario of the appearance and disappearance of the VBB is similar to that occurring in a single-fluid flow and in the upper fluid of a two-fluid flow.

1.
D. H.
Peckham
and
S. A.
Atkinson
, “
Preliminary results of low speed and tunnel tests on a Gothic wing of aspect ratio 1.0
,” Aeronautical Research Council Technical Report CP-508, TN NO Aero 254,
1957
.
2.
T. B.
Benjamin
, “
Theory of vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
593
(
1962
).
3.
V.
Shtern
,
Cellular Flows. Topological Metamorphoses in Fluid Dynamics
(
Cambridge University Press
,
NY
,
2018
).
4.
H. U.
Vogel
, “
Experimentelle ergebnisse über die laminare strömung in einem zylindrischen gehäuse mit darin rotierender scheibe
,” Bericht 6,
Max-Planck-Institut für Strömungsforschung
,
Göttingen
,
1968
.
5.
M. P.
Escudier
, “
Observations of the flow produced in cylindrical container by a rotating endwall
,”
Exp. Fluids
2
,
189
(
1984
).
6.
J. M.
Lopez
, “
Axisymmetric vortex breakdown Part 1. Confined swirling flow
,”
J. Fluid Mech.
221
,
533
(
1990
).
7.
Yu. A.
Ramazanov
,
V. I.
Kislykh
,
I. P.
Kosyuk
,
N. V.
Bakuleva
, and
V. V.
Shchurikhina
, “
Industrial production of vaccines using embryonic cells in gas-vortex gradient-less bioreactors
,” in
New Aspects of Biotechnology and Medicine
, edited by
A. M.
Egorov
(
Nova Scientific Books
,
New York
,
2007
), pp.
87
91
, ISBN: 1-60021-465-7.
8.
K. Y. S.
Liow
,
G.
Thouas
,
B. T.
Tan
,
M. C.
Thompson
, and
K.
Hourigan
, “
Modelling the transport of momentum and oxygen in an aerial-disk driven bioreactor used for animal tissue or cell culture
,” in
IFMBE Proceedings
(
Springer
,
2008
), Vol. 23, p.
1672
.
9.
K. Y. S.
Liow
,
B. T.
Tan
,
G.
Thouas
, and
M. C.
Thompson
, “
CFD modeling of the steady-state momentum and oxygen transport in a bioreactor that is driven by an aerial rotating disk
,”
Mod. Phys. Lett. B
23
,
121
(
2009
).
10.
D.
Lo Jacono
,
M.
Nazarinia
, and
M.
Brøns
, “
Experimental vortex breakdown topology in a cylinder with a free surface
,”
Phys. Fluids
21
,
111704
(
2009
).
11.
S.
Fujimoto
and
Y.
Takeda
, “
Topology changes of the interface between two immiscible liquid layers by a rotating lid
,”
Phys. Rev. E
80
,
015304(R)
(
2009
).
12.
J.-C.
Tsai
,
C.-Y.
Tao
,
Y.-C.
Sun
,
C.-Y.
Lai
,
K.-H.
Huang
,
W.-T.
Juan
, and
J.-R.
Huang
, “
Vortex-induced morphology on a two-fluid interface and the transitions
,”
Phys. Rev. E
92
,
031002(R)
(
2015
).
13.
L.
Carrión
,
M. A.
Herrada
, and
V. N.
Shtern
, “
Topology and stability of a water-soybean-oil swirling flow
,”
Phys. Rev. Fluids
2
,
024702
(
2017
).
14.
L.
Carrión
,
M. A.
Herrada
, and
V. N.
Shtern
, “
Topology changes in a water-oil swirling flow
,”
Phys. Fluids
29
,
032109
(
2017
).
15.
I. V.
Naumov
,
M. A.
Herrada
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Hysteretic growth and decay of a waterspout column
,”
Phys. Rev. Fluids
3
,
024701
(
2018
).
16.
I. V.
Naumov
,
M. A.
Herrada
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Slip at the interface of a two-fluid swirling flow
,”
Phys. Fluids
30
,
074101
(
2018
).
17.
S. J.
Bolaño
and
B.
Vernescu
, “
Derivation of the Navier slip and slip length for viscous flows over a rough boundary
,”
Phys. Fluids
29
,
057103
(
2017
).
18.
D.
Crowdy
, “
Slip length for transverse shear flow over a periodic array of weakly curved menisci
,”
Phys. Fluids
29
,
091702
(
2017
).
19.
S.
Das
,
A.
Bhattacharjee
, and
S.
Chakraborty
, “
Influence of interfacial slip on the suspension rheology of a dilute emulsion of surfactant laden deformable drops in linear flows
,”
Phys. Fluids
30
,
032005
(
2018
).
20.
I. V.
Naumov
,
V. G.
Glavny
,
B. R.
Sharifullin
, and
V. N.
Shtern
, “
Formation of a thin circulation layer in a two-fluid rotating flow
,”
Phys. Rev. Fluids
4
,
054702
(
2019
).
21.
C. P.
Hills
, “
Eddies induced in cylindrical containers by a rotating end wall
,”
Phys. Fluids
13
,
2279
(
2001
).
You do not currently have access to this content.