An immersed boundary–simplified lattice Boltzmann method (IB-STLBM) is proposed in this paper for the simulation of incompressible thermal flows with immersed objects. The fractional step technique is adopted to resolve the problem in two successive steps. In the predictor step, the simplified thermal lattice Boltzmann method (STLBM) is utilized to resolve the intermediate flow variables without considering the immersed objects. The STLBM is advantageous over the conventional thermal lattice Boltzmann method (TLBM) in memory cost, boundary treatment, and numerical stability. In the corrector step, the boundary condition-enforced immersed boundary method (IBM) is used to give correction values of velocity and temperature for accurate interpretation of the Dirichlet boundary conditions on the surface of the immersed objects. Based on the present IBM, some novel strategies can be applied in the evaluation of hydrodynamic forces or thermal parameters of the immersed objects. Five numerical examples are presented for comprehensive validation of the accuracy and robustness of IB-STLBM in various two- and three-dimensional thermal flow problems.

1.
C.
Lee
and
X.
Jiang
, “
Flow structures in transitional and turbulent boundary layers
,”
Phys. Fluids
31
,
111301
(
2019
).
2.
X.
He
,
S.
Chen
, and
G. D.
Doolen
, “
A novel thermal model for the lattice Boltzmann method in incompressible limit
,”
J. Comput. Phys.
146
,
282
300
(
1998
).
3.
Y.
Zhu
,
X.
Chen
,
J.
Wu
,
S.
Chen
,
C.
Lee
, and
M.
Gad-el-Hak
, “
Aerodynamic heating in transitional hypersonic boundary layers: Role of second-mode instability
,”
Phys. Fluids
30
,
011701
(
2018
).
4.
C.
Lee
and
R.
Li
, “
Dominant structure for turbulent production in a transitional boundary layer
,”
J. Turbul.
8
,
N55
(
2007
).
5.
S.
Patankar
,
Numerical Heat Transfer and Fluid Flow
(
CRC Press
,
2018
).
6.
C.
Lee
, “
Possible universal transitional scenario in a flat plate boundary layer: Measurement and visualization
,”
Phys. Rev. E
62
,
3659
(
2000
).
7.
Y.
Wang
,
C.
Shu
, and
C.
Teo
, “
Thermal lattice Boltzmann flux solver and its application for simulation of incompressible thermal flows
,”
Comput. Fluids
94
,
98
111
(
2014
).
8.
Y.
Peng
,
C.
Shu
,
Y.
Chew
, and
T.
Inamuro
, “
Lattice kinetic scheme for the incompressible viscous thermal flows on arbitrary meshes
,”
Phys. Rev. E
69
,
016703
(
2004
).
9.
C.
Lee
and
J.
Wu
, “
Transition in wall-bounded flows
,”
Appl. Math. Rev.
61
,
030802
(
2008
).
10.
J. D.
Anderson
and
J.
Wendt
,
Computational Fluid Dynamics
(
Springer
,
1995
).
11.
H. K.
Versteeg
and
W.
Malalasekera
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
(
Pearson Education
,
2007
).
12.
H.
Grad
, “
Principles of the kinetic theory of gases
,” in
Thermodynamik der Gase/Thermodynamics of Gases
(
Springer
,
1958
), pp.
205
294
.
13.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
(
1954
).
14.
Z.
Guo
and
C.
Shu
,
Lattice Boltzmann Method and its Applications in Engineering
(
World Scientific
,
2013
).
15.
C. K.
Aidun
and
J. R.
Clausen
, “
Lattice-Boltzmann method for complex flows
,”
Annu. Rev. Fluid Mech.
42
,
439
472
(
2010
).
16.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
17.
S.
Gabbanelli
,
G.
Drazer
, and
J.
Koplik
, “
Lattice Boltzmann method for non-Newtonian (power-law) fluids
,”
Phys. Rev. E
72
,
046312
(
2005
).
18.
X.
He
,
S.
Chen
, and
R.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
,”
J. Comput. Phys.
152
,
642
663
(
1999
).
19.
J. G.
Zhou
, “
Axisymmetric lattice Boltzmann method
,”
Phys. Rev. E
78
,
036701
(
2008
).
20.
H.
Yu
,
S. S.
Girimaji
, and
L.-S.
Luo
, “
DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method
,”
J. Comput. Phys.
209
,
599
616
(
2005
).
21.
Y.
Xuan
and
Z.
Yao
, “
Lattice Boltzmann model for nanofluids
,”
Heat Mass Transfer
41
,
199
205
(
2005
).
22.
G.
McNamara
and
B.
Alder
, “
Analysis of the lattice Boltzmann treatment of hydrodynamics
,”
Physica A
194
,
218
228
(
1993
).
23.
F. J.
Alexander
,
S.
Chen
, and
J.
Sterling
, “
Lattice Boltzmann thermohydrodynamics
,”
Phys. Rev. E
47
,
R2249
(
1993
).
24.
X.
Shan
, “
Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method
,”
Phys. Rev. E
55
,
2780
(
1997
).
25.
A.
Bartoloni
,
C.
Battista
,
S.
Cabasino
,
P.
Paolucci
,
J.
Pech
,
R.
Sarno
,
G.
Todesco
,
M.
Torelli
,
W.
Tross
, and
P.
Vicini
, “
LBE simulations of Rayleigh-Benard convection on the APE100 parallel processor
,”
Int. J. Mod. Phys. C
4
,
993
1006
(
1993
).
26.
J.
Onishi
,
Y.
Chen
, and
H.
Ohashi
, “
Lattice Boltzmann simulation of natural convection in a square cavity
,”
JSME Int. J., Ser. B
44
,
53
62
(
2001
).
27.
A.
d’Orazio
,
S.
Succi
, and
C.
Arrighetti
, “
Lattice Boltzmann simulation of open flows with heat transfer
,”
Phys. Fluids
15
,
2778
2781
(
2003
).
28.
Y.
Peng
,
C.
Shu
, and
Y.
Chew
, “
Simplified thermal lattice Boltzmann model for incompressible thermal flows
,”
Phys. Rev. E
68
,
026701
(
2003
).
29.
Q.
Zou
and
X.
He
, “
On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
,”
Phys. Fluids
9
,
1591
1598
(
1997
).
30.
J. D.
Sterling
and
S.
Chen
, “
Stability analysis of lattice Boltzmann methods
,”
J. Comput. Phys.
123
,
196
206
(
1996
).
31.
Z.
Chen
,
C.
Shu
,
D.
Tan
, and
C.
Wu
, “
On improvements of simplified and highly stable lattice Boltzmann method: Formulations, boundary treatment, and stability analysis
,”
Int. J. Numer. Methods Fluids
87
,
161
179
(
2018
).
32.
Z.
Chen
,
C.
Shu
,
Y.
Wang
,
L. M.
Yang
, and
D.
Tan
, “
A simplified lattice Boltzmann method without evolution of distribution function
,”
Adv. Appl. Math. Mech.
9
,
1
22
(
2017
).
33.
Z.
Chen
,
C.
Shu
, and
D.
Tan
, “
High-order simplified thermal lattice Boltzmann method for incompressible thermal flows
,”
Int. J. Heat Mass Transfer
127
,
1
16
(
2018
).
34.
Z.
Chen
,
C.
Shu
,
D.
Tan
,
X.
Niu
, and
Q.
Li
, “
Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces
,”
Phys. Rev. E
98
,
063314
(
2018
).
35.
S. J.
Owen
, “
A survey of unstructured mesh generation technology
,” in
Proceedings of the 7th International Meshing Roundtable, Dearborn, Michigan, 26–28 October 1998
(
Sandia National Lab
,
1998
), pp.
239
267
.
36.
D.
Mavriplis
, “
Unstructured grid techniques
,”
Annu. Rev. Fluid Mech.
29
,
473
514
(
1997
).
37.
J.
Donea
,
S.
Giuliani
, and
J.-P.
Halleux
, “
An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions
,”
Comput. Methods Appl. Mech. Eng.
33
,
689
723
(
1982
).
38.
C.
Hirt
,
A. A.
Amsden
, and
J.
Cook
, “
An arbitrary Lagrangian-Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
14
,
227
253
(
1974
).
39.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
40.
H.
Garg
,
A. K.
Soti
, and
R.
Bhardwaj
, “
A sharp interface immersed boundary method for vortex-induced vibration in the presence of thermal buoyancy
,”
Phys. Fluids
30
,
023603
(
2018
).
41.
Y.
Kim
and
C. S.
Peskin
, “
A penalty immersed boundary method for a rigid body in fluid
,”
Phys. Fluids
28
,
033603
(
2016
).
42.
G.-Q.
Chen
,
X.
Huang
,
A.-M.
Zhang
,
S.-P.
Wang
, and
T.
Li
, “
Three-dimensional simulation of a rising bubble in the presence of spherical obstacles by the immersed boundary–lattice Boltzmann method
,”
Phys. Fluids
31
,
097104
(
2019
).
43.
R. P.
Beyer
and
R. J.
LeVeque
, “
Analysis of a one-dimensional model for the immersed boundary method
,”
SIAM J. Numer. Anal.
29
,
332
364
(
1992
).
44.
M.-C.
Lai
and
C. S.
Peskin
, “
An immersed boundary method with formal second-order accuracy and reduced numerical viscosity
,”
J. Comput. Phys.
160
,
705
719
(
2000
).
45.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems
,”
J. Comput. Phys.
195
,
602
628
(
2004
).
46.
Z.-G.
Feng
and
E. E.
Michaelides
, “
Proteus: A direct forcing method in the simulations of particulate flows
,”
J. Comput. Phys.
202
,
20
51
(
2005
).
47.
J.
Wu
and
C.
Shu
, “
An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows
,”
J. Comput. Phys.
229
,
5022
5042
(
2010
).
48.
W.
Ren
,
C.
Shu
,
J.
Wu
, and
W.
Yang
, “
Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications
,”
Comput. Fluids
57
,
40
51
(
2012
).
49.
J.
Wu
and
C.
Shu
, “
Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications
,”
J. Comput. Phys.
228
,
1963
1979
(
2009
).
50.
A. J.
Chorin
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
,
745
762
(
1968
).
51.
Z.
Chen
,
C.
Shu
, and
D.
Tan
, “
A simplified thermal lattice Boltzmann method without evolution of distribution functions
,”
Int. J. Heat Mass Transfer
105
,
741
757
(
2017
).
52.
S.
Dennis
and
G.-Z.
Chang
, “
Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100
,”
J. Fluid Mech.
42
,
471
489
(
1970
).
53.
X.
He
and
G.
Doolen
, “
Lattice Boltzmann method on curvilinear coordinates system: Flow around a circular cylinder
,”
J. Comput. Phys.
134
,
306
315
(
1997
).
54.
X.
Niu
,
C.
Shu
,
Y.
Chew
, and
Y.
Peng
, “
A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows
,”
Phys. Lett. A
354
,
173
182
(
2006
).
55.
S. C. R.
Dennis
,
J.
Hudson
, and
N.
Smith
, “
Steady laminar forced convection from a circular cylinder at low Reynolds numbers
,”
Phys. Fluids
11
,
933
940
(
1968
).
56.
C.
Lange
,
F.
Durst
, and
M.
Breuer
, “
Momentum and heat transfer from cylinders in laminar crossflow at 10−4 ⩽ Re ⩽ 200
,”
Int. J. Heat Mass Transfer
41
,
3409
3430
(
1998
).
57.
A.
Soares
,
J.
Ferreira
, and
R.
Chhabra
, “
Flow and forced convection heat transfer in crossflow of non-Newtonian fluids over a circular cylinder
,”
Ind. Eng. Chem. Res.
44
,
5815
5827
(
2005
).
58.
E. M.
Sparrow
,
J. P.
Abraham
, and
J. C.
Tong
, “
Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross-flow
,”
Int. J. Heat Mass Transfer
47
,
5285
5296
(
2004
).
59.
R. P.
Bharti
,
R.
Chhabra
, and
V.
Eswaran
, “
A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder
,”
Heat Mass Transfer
43
,
639
648
(
2007
).
60.
C.
Shu
and
Y.
Zhu
, “
Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder
,”
Int. J. Numer. Methods Fluids
38
,
429
445
(
2002
).
61.
F.
Moukalled
and
S.
Acharya
, “
Natural convection in the annulus between concentric horizontal circular and square cylinders
,”
J. Thermophys. Heat Transfer
10
,
524
531
(
1996
).
62.
K.
Khanafer
and
S.
Aithal
, “
Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder
,”
Int. J. Heat Mass Transfer
66
,
200
209
(
2013
).
63.
A.
Hatton
,
D.
James
, and
H.
Swire
, “
Combined forced and natural convection with low-speed air flow over horizontal cylinders
,”
J. Fluid Mech.
42
,
17
31
(
1970
).
64.
J.-M.
Shi
,
D.
Gerlach
,
M.
Breuer
,
G.
Biswas
, and
F.
Durst
, “
Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder
,”
Phys. Fluids
16
,
4331
4345
(
2004
).
65.
Á.
González
, “
Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices
,”
Math. Geosci.
42
,
49
(
2010
).
66.
H.
Yoon
,
D.
Yu
,
M.
Ha
, and
Y.
Park
, “
Three-dimensional natural convection in an enclosure with a sphere at different vertical locations
,”
Int. J. Heat Mass Transfer
53
,
3143
3155
(
2010
).
You do not currently have access to this content.