Thixotropic materials belong to the important class of time dependent, evolving, and aging systems. Their characteristics are currently understood through rheological measurements of steady and step shear wherein the steady states reached at large deformations and the transition from one steady state to another are monitored. Small deformation protocols are not well explored for such systems. This is contrary to the common approach of probing equilibrium state and small perturbations from the equilibrium state initially by focusing on linear viscoelasticity. This work addresses the question of how to understand thixotropic materials by focusing on both the small and large deformations. A model suspension of fumed silica in polyisobutylene/paraffin oil is characterized using steady shear, transient shear, and oscillatory shear rheology. The physical processes occurring due to structural changes during each of the tests are interpreted from the corresponding response. Several structural kinetics and elastoplastic/viscoelastic phenomenological models are evaluated, and a novel combination of models is proposed to obtain the description of the responses to various tests. The advantage of this strategy is highlighted in terms of possible difference in the mechanisms at small and large deformations. Kramers–Kronig relations are used to examine the experimental and simulated dataset obtained from oscillatory shear to identify possible violation of linearity or time independence. We demonstrate that the analysis of the oscillatory response using Kramers–Kronig relations leads to important insights about these systems.

1.
C.
Huang
,
N.
Siskovic
,
R.
Robertson
,
W.
Fabisiak
,
E. H.
Smitherberg
, and
A. L.
Copley
, “
Quantitative characterization of thixotropy of whole human blood
,”
Biorheology
12
,
279
282
(
1975
).
2.
C. H.
Lee
,
V.
Moturi
, and
Y.
Lee
, “
Thixotropic property in pharmaceutical formulations
,”
J. Controlled Release
136
,
88
98
(
2009
).
3.
S. M.
Razavi
and
H.
Karazhiyan
, “
Flow properties and thixotropy of selected hydrocolloids: Experimental and modeling studies
,”
Food Hydrocolloids
23
,
908
912
(
2009
).
4.
C.
Van Der Geest
,
V. C. B.
Guersoni
,
D.
Merino-Garcia
, and
A. C.
Bannwart
, “
A modified elasto-viscoplastic thixotropic model for two commercial gelled waxy crude oils
,”
Rheol. Acta
54
,
545
561
(
2015
).
5.
C. F.
Goodeve
and
G. W.
Whitfield
, “
The measurement of thixotropy in absolute units
,”
Trans. Faraday Soc.
34
,
511
520
(
1938
).
6.
J.
Mewis
, “
Thixotropy—A general review
,”
J. Non-Newtonian Fluid Mech.
6
,
1
20
(
1979
).
7.
H. A.
Barnes
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
8.
J.
Mewis
and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147-148
,
214
227
(
2009
).
9.
R. G.
Larson
and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
10.
Y.
Wei
,
M. J.
Solomon
, and
R. G.
Larson
, “
A multimode structural kinetics constitutive equation for the transient rheology of thixotropic elasto-viscoplastic fluids
,”
J. Rheol.
62
,
321
342
(
2018
).
11.
D.
Xie
,
G. G.
Qiao
, and
D. E.
Dunstan
, “
Flow-induced aggregation of colloidal particles in viscoelastic fluids
,”
Phys. Rev. E
94
,
022610
(
2016
).
12.
D.
Quemada
, “
Rheological modelling of complex fluids: II. shear thickening behavior due to shear induced flocculation
,”
Eur. Phys. J.: Appl. Phys.
2
,
175
181
(
1998
).
13.
D.
Quemada
, “
Rheological modelling of complex fluids: IV: Thixotropic and “thixoelastic” behaviour. start-up and stress relaxation, creep tests and hysteresis cycles
,”
Eur. Phys. J.: Appl. Phys.
5
,
191
207
(
1999
).
14.
J.
Vermant
and
M. J.
Solomon
, “
Flow-induced structure in colloidal suspensions
,”
J. Phys.: Condens. Matter
17
,
R187
R216
(
2005
).
15.
K.
Masschaele
,
J.
Fransaer
, and
J.
Vermant
, “
Flow-induced structure in colloidal gels: Direct visualization of model 2D suspensions
,”
Soft Matter
7
,
7717
7726
(
2011
).
16.
P. R.
de Souza Mendes
and
R. L.
Thompson
, “
A critical overview of elasto-viscoplastic thixotropic modeling
,”
J. Non-Newtonian Fluid Mech.
187-188
,
8
15
(
2012
).
17.
R.
Radhakrishnan
,
T.
Divoux
,
S.
Manneville
, and
S. M.
Fielding
, “
Understanding rheological hysteresis in soft glassy materials
,”
Soft Matter
13
,
1834
1852
(
2017
).
18.
R. H.
Ewoldt
and
G. H.
McKinley
, “
Mapping thixo-elasto-visco-plastic behavior
,”
Rheol. Acta
56
,
195
210
(
2017
).
19.
Y. M.
Joshi
and
G.
Petekidis
, “
Yield stress fluids and ageing
,”
Rheol. Acta
57
,
521
549
(
2018
).
20.
K.
Dullaert
and
J.
Mewis
, “
Thixotropy: Build-up and breakdown curves during flow
,”
J. Rheol.
49
,
1213
1230
(
2005
).
21.
M. J.
Armstrong
,
A. N.
Beris
,
S. A.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments
,”
J. Rheol.
60
,
433
450
(
2016
).
22.
Y.
Wei
,
M. J.
Solomon
, and
R. G.
Larson
, “
Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows
,”
J. Rheol.
60
,
1301
1315
(
2016
).
23.
J. S.
Horner
,
M. J.
Armstrong
,
N. J.
Wagner
, and
A. N.
Beris
, “
Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear
,”
J. Rheol.
62
,
577
591
(
2018
).
24.
M.
Armstrong
,
J.
Horner
,
M.
Clark
,
M.
Deegan
,
T.
Hill
,
C.
Keith
, and
L.
Mooradian
, “
Evaluating rheological models for human blood using steady state, transient, and oscillatory shear predictions
,”
Rheol. Acta
57
,
705
728
(
2018
).
25.
H. T.
Huynh
,
N.
Roussel
, and
P.
Coussot
, “
Aging and free surface flow of a thixotropic fluid
,”
Phys. Fluids
17
,
033101
(
2005
).
26.
S.
Jabbari-Farouji
,
M.
Atakhorrami
,
D.
Mizuno
,
E.
Eiser
,
G. H.
Wegdam
,
C.
MacKintosh
,
D.
Bonn
, and
C. F.
Schmidt
, “
High-bandwidth viscoelastic properties of aging colloidal glasses and gels
,”
Phys. Rev. E
78
,
061402
(
2008
).
27.
M.
Agarwal
and
Y. M.
Joshi
, “
Signatures of physical aging and thixotropy in aqueous dispersion of carbopol
,”
Phys. Fluids
31
,
063107
(
2019
).
28.
A. R.
Jacob
,
E.
Moghimi
, and
G.
Petekidis
, “
Rheological signatures of aging in hard sphere colloidal glasses
,”
Phys. Fluids
31
,
087103
(
2019
).
29.
K.
Dullaert
and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Non-Newtonian Fluid Mech.
139
,
21
30
(
2006
).
30.
B. C.
Blackwell
and
R. H.
Ewoldt
, “
A simple thixotropic–viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS)
,”
J. Non-Newtonian Fluid Mech.
208-209
,
27
41
(
2014
).
31.
A. J.
Apostolidis
,
M. J.
Armstrong
, and
A. N.
Beris
, “
Modeling of human blood rheology in transient shear flows
,”
J. Rheol.
59
,
275
298
(
2015
).
32.
M. J.
Armstrong
,
A. N.
Beris
,
S. A.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology and structure kinetics modeling of a thixotropic carbon black suspension
,”
Rheol. Acta
56
,
811
824
(
2017
).
33.
C.
Brée
,
A.
Demircan
, and
G.
Steinmeyer
, “
Kramers-Kronig relations and high-order nonlinear susceptibilities
,”
Phys. Rev. A
85
,
033806
(
2012
).
34.
C.
Bédard
and
A.
Destexhe
, “
Generalized theory for current-source-density analysis in brain tissue
,”
Phys. Rev. E
84
,
041909
(
2011
).
35.
A.
Mujumdar
,
A. N.
Beris
, and
A. B.
Metzner
, “
Transient phenomena in thixotropic systems
,”
J. Non-Newtonian Fluid Mech.
102
,
157
178
(
2002
).
36.
R. G.
Larson
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
,
595
611
(
2015
).
37.
A.
Beris
,
E.
Stiakakis
, and
D.
Vlassopoulos
, “
A thermodynamically consistent model for the thixotropic behavior of concentrated star polymer suspensions
,”
J. Non-Newtonian Fluid Mech.
152
,
76
85
(
2008
).
38.
J.
Labanda
,
P.
Marco
, and
J.
Llorens
, “
Rheological model to predict the thixotropic behaviour of colloidal dispersions
,”
Colloids Surf., A
249
,
123
126
(
2004
).
39.
J.
Labanda
and
J.
Llorens
, “
A structural model for thixotropy of colloidal dispersions
,”
Rheol. Acta
45
,
305
314
(
2006
).
40.
H. P. A.
de Deus
,
C. O.
Negrão
, and
A. T.
Franco
, “
The modified Jeffreys model approach for elasto-viscoplastic thixotropic substances
,”
Phys. Lett. A
380
,
585
595
(
2016
).
41.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, Fluid Mechanics Vol. 1 (
John Wiley & Sons
,
New York
,
1987
).
42.
S. A.
Rogers
,
P. T.
Callaghan
,
G.
Petekidis
, and
D.
Vlassopoulos
, “
Time-dependent rheology of colloidal star glasses
,”
J. Rheol.
54
,
133
158
(
2010
).
43.
P. M.
Mwasame
,
A. N.
Beris
,
R. B.
Diemer
, and
N. J.
Wagner
, “
A constitutive equation for thixotropic suspensions with yield stress by coarse-graining a population balance model
,”
AIChE J.
63
,
517
531
(
2017
).
44.
P. R.
de Souza Mendes
,
K. R.
Rajagopal
, and
R. L.
Thompson
, “
A thermodynamic framework to model thixotropic materials
,”
Int. J. Non-Linear Mech.
55
,
48
54
(
2013
).
45.
S.
Varchanis
,
G.
Makrigiorgos
,
P.
Moschopoulos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Modeling the rheology of thixotropic elasto-visco-plastic materials
,”
J. Rheol.
63
,
609
639
(
2019
).
46.
J. S.
Horner
,
M. J.
Armstrong
,
N. J.
Wagner
, and
A. N.
Beris
, “
Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof
,”
J. Rheol.
63
,
799
813
(
2019
).
47.
K.
Dullaert
and
J.
Mewis
, “
A model system for thixotropy studies
,”
Rheol. Acta
45
,
23
32
(
2005
).
48.
M.
Urquidi-Macdonald
,
S.
Real
, and
D. D.
Macdonald
, “
Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. stability and linearity
,”
Electrochim. Acta
35
,
1559
1566
(
1990
).
49.
H. C.
Booij
and
G. P. J. M.
Thoone
, “
Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities
,”
Rheol. Acta
21
,
15
24
(
1982
).
50.
L.
Rouleau
,
J.-F.
Deü
,
A.
Legay
, and
F. L.
Lay
, “
Application of Kramers–Kronig relations to time–temperature superposition for viscoelastic materials
,”
Mech. Mater.
65
,
66
75
(
2013
).
51.
N.
Makris
and
G.
Kampas
, “
Analyticity and causality of the three-parameter rheological models
,”
Rheol. Acta
48
,
815
825
(
2009
).
52.
H. H.
Winter
, “
Analysis of dynamic mechanical data: Inversion into a relaxation time spectrum and consistency check
,”
J. Non-Newtonian Fluid Mech.
68
,
225
239
(
1997
).
53.
B. M.
Erwin
,
S. A.
Rogers
,
M.
Cloitre
, and
D.
Vlassopoulos
, “
Examining the validity of strain-rate frequency superposition when measuring the linear viscoelastic properties of soft materials
,”
J. Rheol.
54
,
187
195
(
2010
).
54.
J. K. G.
Dhont
and
N. J.
Wagner
, “
Superposition rheology
,”
Phys. Rev. E
63
,
021406
(
2001
).
55.
T.
Pritz
, “
Unbounded complex modulus of viscoelastic materials and the Kramers–Kronig relations
,”
J. Sound Vib.
279
,
687
697
(
2005
).
56.
B. A.
Boukamp
, “
A linear Kronig-Kramers transform test for immittance data validation
,”
J. Electrochem. Soc.
142
,
1885
1894
(
1995
).
57.
B. A.
Boukamp
, “
Electrochemical impedance spectroscopy in solid state ionics: Recent advances
,”
Solid State Ionics
169
,
65
73
(
2004
).
58.
M.
Mours
and
H. H.
Winter
, “
Time-resolved rheometry
,”
Rheol. Acta
33
,
385
397
(
1994
).
59.
H.
Barthel
, “
Surface interactions of dimethylsiloxy group-modified fumed silica
,”
Colloids Surf., A
101
,
217
226
(
1995
).
60.
S. R.
Raghavan
,
H. J.
Walls
, and
S. A.
Khan
, “
Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding
,”
Langmuir
16
,
7920
7930
(
2000
).
61.
C.
Frederick
and
P.
Armstrong
, “
A mathematical representation of the multiaxial Bauschinger effect
,”
Mater. High Temp.
24
,
1
26
(
2007
).
62.
A.
Kate Gurnon
and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles
,”
J. Rheol.
56
,
333
351
(
2012
).
63.
K. A.
Ramya
,
R.
Srinivasan
, and
A. P.
Deshpande
, “
Nonlinear measures and modeling to examine the role of physical and chemical crosslinking in poly(vinyl alcohol)-based crosslinked systems
,”
Rheol. Acta
57
,
181
195
(
2018
).

Supplementary Material

You do not currently have access to this content.