Cellulose gum, also known as sodium carboxymethyl cellulose (NaCMC), is a polysaccharide often used as a thickener or rheology modifier in many industrial complex fluids, including foods. Shear and extensional rheology response influence production and processing of food, as well as the consumer perception and bioprocessing that begin with every bite. Stream-wise velocity gradients associated with extensional flows spontaneously arise during extrusion, calendaring, coating, dispensing, bubble growth or collapse, as well as during consumption including swallowing and suction via straws. The influence of polysaccharides on shear rheology response is fairly well characterized and utilized in food industry. In contrast, elucidating, measuring, and harnessing the extensional rheology response have remained longstanding challenges and motivate this study. The characterization challenges include the lack of robust, reliable, and affordable methods for measuring extensional rheology response. The product design challenges stem from the difficulties in assessing or predicting the influence of macromolecular properties on macroscopic rheological behavior. In this contribution, we address the characterization challenges using dripping-onto-substrate (DoS) rheometry protocols that rely on analysis of capillary-driven thinning and breakup of liquid necks created by releasing a finite volume of fluid onto a substrate. The DoS rheometry protocols emulate the heuristic tests of thickening, stickiness, or cohesiveness based on dripping a sauce from a ladle. We show that adding glycerol or changing salt concentration can be used for tuning the pinch-off dynamics, extensional rheology response, and processability of unentangled solutions of cellulose gum, whereas entangled solutions are relatively insensitive to changes in salt concentration.

1.
T.
Wüstenberg
,
Cellulose and Cellulose Derivatives in the Food Industry: Fundamentals and Applications
(
John Wiley & Sons
,
2014
).
2.
E.
Dickinson
, “
Hydrocolloids as emulsifiers and emulsion stabilizers
,”
Food Hydrocolloids
23
,
1473
(
2009
).
3.
P.
Fischer
and
E. J.
Windhab
, “
Rheology of food materials
,”
Curr. Opin. Colloid Interface Sci.
16
,
36
(
2011
).
4.
R.
Lapasin
and
S.
Pricl
,
Rheology of Industrial Polysaccharides: Theory and Applications
(
Chapman & Hall
,
London
,
1995
).
5.
S.
Dumitriu
,
Polysaccharides: Structural Diversity and Functional Versality
(
Marcel Dekker
,
New York
,
2005
).
6.
C.
Clasen
and
W. M.
Kulicke
, “
Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives
,”
Prog. Polym. Sci.
26
,
1839
(
2001
).
7.
R.
Lambourne
and
T. A.
Striven
,
Paint and Surface Coatings: Theory and Practice
(
Woodhead Publishing Ltd.
,
Cambridge, UK
,
1999
).
8.
S.
Morozova
,
P. W.
Schmidt
,
A.
Metaxas
,
F. S.
Bates
,
T. P.
Lodge
, and
C. S.
Dutcher
, “
Extensional flow behavior of methylcellulose solutions containing fibrils
,”
ACS Macro Lett.
7
,
347
(
2018
).
9.
G.
Savary
,
M.
Grisel
, and
C.
Picard
, “
Cosmetics and personal care products
,” in
Natural Polymers: Industry Techniques and Applications
, edited by
O.
Olatunji
(
Springer
,
2016
).
10.
K. M. N.
Oates
,
W. E.
Krause
,
R. L.
Jones
, and
R. H.
Colby
, “
Rheopexy of synovial fluid and protein aggregation
,”
J. R. Soc., Interface
3
,
167
(
2006
).
11.
S. J.
Haward
,
V.
Sharma
, and
J. A.
Odell
, “
Extensional opto-rheometry with biofluids and ultra-dilute polymer solutions
,”
Soft Matter
7
,
9908
(
2011
).
12.
E.
Puchelle
,
J.
Zahm
, and
C.
Duvivier
, “
Spinability of bronchial mucus. Relationship with viscoelasticity and mucous transport properties
,”
Biorheology
20
,
239
(
1983
).
13.
P.
Erni
,
M.
Varagnat
,
C.
Clasen
,
J.
Crest
, and
G. H.
McKinley
, “
Microrheometry of sub-nanolitre biopolymer samples: non-Newtonian flow phenomena of carnivorous plant mucilage
,”
Soft Matter
7
,
10889
(
2011
).
14.
L.
Gaume
and
Y.
Forterre
, “
A viscoelastic deadly fluid in carnivorous pitcher plants
,”
PLoS One
2
,
e1185
(
2007
).
15.
C.
Arancibia
,
S.
Bayarri
, and
E.
Costell
, “
Comparing carboxymethyl cellulose and starch as thickeners in oil/water emulsions. Implications on rheological and structural properties
,”
Food Biophys.
8
,
122
(
2013
).
16.
M.
Bahramparvar
and
M.
Mazaheri Tehrani
, “
Application and functions of stabilizers in ice cream
,”
Food Rev. Int.
27
,
389
(
2011
).
17.
M. A.
Cancela
,
E.
Alvarez
, and
R.
Maceiras
, “
Effects of temperature and concentration on carboxymethylcellulose with sucrose rheology
,”
J. Food Eng.
71
,
419
(
2005
).
18.
M. D.
Torres
,
B.
Hallmark
, and
D. I.
Wilson
, “
Effect of concentration on shear and extensional rheology of guar gum solutions
,”
Food Hydrocolloids
40
,
85
(
2014
).
19.
M. D.
Torres
,
B.
Hallmark
,
D. I.
Wilson
, and
L.
Hilliou
, “
Natural giesekus fluids: Shear and extensional behavior of food gum solutions in the semidilute regime
,”
AlChE J.
60
,
3902
(
2014
).
20.
M. T.
Ghannam
and
M. N.
Esmail
, “
Rheological properties of carboxymethyl cellulose
,”
J. Appl. Polym. Sci.
64
,
289
(
1997
).
21.
F. A.
Ismail
,
E. T.
El-Ashwah
, and
S. A.
El-Farra
, “
The practical aspects of viscosity of carboxymethylcellulose in dietetic foods
,”
J. Consum. Stud. Home Econ.
4
,
269
(
1980
).
22.
E.
Malinauskytė
,
J.
Ramanauskaitė
,
D.
Leskauskaitė
,
T. G.
Devold
,
R. B.
Schüller
, and
G. E.
Vegarud
, “
Effect of human and simulated gastric juices on the digestion of whey proteins and carboxymethylcellulose-stabilised O/W emulsions
,”
Food Chem.
165
,
104
(
2014
).
23.
O.
Yuliarti
,
K. H.
Mei
,
Z. K. X.
Ting
, and
K. Y.
Yi
, “
Influence of combination carboxymethylcellulose and pectin on the stability of acidified milk drinks
,”
Food Hydrocolloids
89
,
216
(
2019
).
24.
R. G. M.
Van der Sman
, “
Soft matter approaches to food structuring
,”
Adv. Colloid Interface Sci.
176
,
18
(
2012
).
25.
R.
Mezzenga
,
P.
Schurtenberger
,
A.
Burbidge
, and
M.
Michel
, “
Understanding foods as soft materials
,”
Nat. Mater.
4
,
729
(
2005
).
26.
P.
Fischer
,
M.
Pollard
,
P.
Erni
,
I.
Marti
, and
S.
Padar
, “
Rheological approaches to food systems
,”
C. R. Phys.
10
,
740
(
2009
).
27.
T.
Funami
, “
In vivo and rheological approaches for characterizing food oral processing and usefulness of polysaccharides as texture modifiers-A review
,”
Food Hydrocolloids
68
,
2
(
2017
).
28.
J.-M.
Li
and
S.-P.
Nie
, “
The functional and nutritional aspects of hydrocolloids in foods
,”
Food Hydrocolloids
53
,
46
(
2016
).
29.
H.
Choi
,
J. R.
Mitchell
,
S. R.
Gaddipati
,
S. E.
Hill
, and
B.
Wolf
, “
Shear rheology and filament stretching behaviour of xanthan gum and carboxymethyl cellulose solution in presence of saliva
,”
Food Hydrocolloids
40
,
71
(
2014
).
30.
K.
Nishinari
,
M.
Turcanu
,
M.
Nakauma
, and
Y.
Fang
, “
Role of fluid cohesiveness in safe swallowing
,”
npj Sci. Food
3
,
5
(
2019
).
31.
J. L.
Kokini
and
K.
Surmay
, “
Steady shear viscosity, first normal stress difference and recoverable strain in carboxymethyl cellulose, sodium alginate and guar gum
,”
Carbohydr. Polym.
23
,
27
(
1994
).
32.
C. J. S.
Petrie
, “
One hundred years of extensional flow
,”
J. Non-Newtonian Fluid Mech.
137
,
1
(
2006
).
33.
G. H.
McKinley
, “
Visco-elasto-capillary thinning and break-up of complex fluids
,”
Rheol. Rev.
1
,
1
38
(
2005
).
34.
G. H.
McKinley
and
T.
Sridhar
, “
Filament-stretching rheometry of complex fluids
,”
Annu. Rev. Fluid Mech.
34
,
375
(
2002
).
35.
T. Q.
Nguyen
and
H. H.
Kausch
,
Flexible Polymer Chains in Elongational Flow: Theory and Experiment
(
Springer-Verlag
,
Berlin
,
1999
).
36.
F.
Rodriguez-Gonzalez
and
L. A.
Bello-Perez
, “
Extensional properties of macromolecules
,”
Curr. Opin. Food Sci.
9
,
98
(
2016
).
37.
S.
Różańska
, “
Extensional rheology in food processing
,” in
Advances in Food Rheology and its Applications
, edited by
J.
Ahmed
,
P.
Ptaszek
, and
S.
Basu
(
Elsevier
,
2017
).
38.
J. R.
Stokes
,
M. W.
Boehm
, and
S. K.
Baier
, “
Oral processing, texture and mouthfeel: From rheology to tribology and beyond
,”
Curr. Opin. Colloid Interface Sci.
18
,
349
(
2013
).
39.
E.
Brito-de la Fuente
,
M.
Turcanu
,
O.
Ekberg
, and
C.
Gallegos
, “
Rheological aspects of swallowing and dysphagia: Shear and elongational flows
,” in
Dysphagia
(
Springer
,
2017
).
40.
M. Q.
Waqas
,
J.
Wiklund
,
A.
Altskär
,
O.
Ekberg
, and
M.
Stading
, “
Shear and extensional rheology of commercial thickeners used for dysphagia management
,”
J. Texture Stud.
48
,
507
(
2017
).
41.
T.
van Vliet
,
A. M.
Janssen
,
A. H.
Bloksma
, and
P.
Walstra
, “
Strain hardening of dough as a requirement for gas retention
,”
J. Texture Stud.
23
,
439
(
1992
).
42.
T.
van Vliet
, “
Strain hardening as an indicator of bread-making performance: A review with discussion
,”
J. Cereal Sci.
48
,
1
(
2008
).
43.
C. I.
Moraru
and
J. L.
Kokini
, “
Nucleation and expansion during extrusion and microwave heating of cereal foods
,”
Compr. Rev. Food Sci. Food Saf.
2
,
147
(
2003
).
44.
P. G.
de Gennes
, “
Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients
,”
J. Chem. Phys.
60
,
5030
(
1974
).
45.
R. G.
Larson
, “
The rheology of dilute solutions of flexible polymers: Progress and problems
,”
J. Rheol.
49
,
1
(
2005
).
46.
C. M.
Schroeder
,
H. P.
Babcock
,
E. S. G.
Shaqfeh
, and
S.
Chu
, “
Observation of polymer conformation hysteresis in extensional flow
,”
Science
301
,
1515
(
2003
).
47.
C. M.
Schroeder
, “
Single polymer dynamics for molecular rheology
,”
J. Rheol.
62
,
371
(
2018
).
48.
D. F.
James
and
K.
Walters
, “
A critical appraisal of available methods for the measurement of extensional properties of mobile systems
,” in
Techniques of Rheological Measurement
, edited by
A. A.
Collyer
(
Elsevier
,
New York
,
1994
).
49.
J.
Dinic
,
Y.
Zhang
,
L. N.
Jimenez
, and
V.
Sharma
, “
Extensional relaxation times of dilute, aqueous polymer solutions
,”
ACS Macro Lett.
4
,
804
(
2015
).
50.
J.
Dinic
,
M.
Biagioli
, and
V.
Sharma
, “
Pinch-off dynamics and extensional relaxation times of intrinsically semi-dilute polymer solutions characterized by dripping-onto-substrate rheometry
,”
J. Polym. Sci., Part B: Polym. Phys.
55
,
1692
(
2017
).
51.
J.
Dinic
,
L. N.
Jimenez
, and
V.
Sharma
, “
Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids
,”
Lab Chip
17
,
460
(
2017
).
52.
L. N.
Jimenez
,
J.
Dinic
,
N.
Parsi
, and
V.
Sharma
, “
Extensional relaxation time, pinch-off dynamics and printability of semi-dilute polyelectrolyte solutions
,”
Macromolecules
51
,
5191
(
2018
).
53.
J.
Dinic
and
V.
Sharma
, “
Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
8766
(
2019
).
54.
K. A.
Marshall
,
A. M.
Liedtke
,
A. H.
Todt
, and
T. W.
Walker
, “
Extensional rheometry with a handheld mobile device
,”
Exp. Fluids
58-69
,
9
(
2017
).
55.
J.
Eggers
and
M. A.
Fontelos
,
Singularities: Formation, Structure, and Propagation
(
Cambridge University Press
,
Cambridge, UK
,
2015
).
56.
P. K.
Notz
,
A. U.
Chen
, and
O. A.
Basaran
, “
Satellite drops: Unexpected dynamics and change of scaling during pinch-off
,”
Phys. Fluids
13
,
549
(
2001
).
57.
J. R.
Castrejón-Pita
,
A. A.
Castrejón-Pita
,
S. S.
Thete
,
K.
Sambath
,
I. M.
Hutchings
,
J.
Hinch
,
J. R.
Lister
, and
O. A.
Basaran
, “
Plethora of transitions during breakup of liquid filaments
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
4582
(
2015
).
58.
A. L.
Yarin
,
Free Liquid Jets and Films: Hydrodynamics and Rheology
(
Longman Scientific & Technical
,
1993
).
59.
A. V.
Bazilevsky
,
V. M.
Entov
, and
A. N.
Rozhkov
,
Liquid Filament Microrheometer and Some of its Applications
(
Elsevier
,
Edinburgh, UK
,
1990
).
60.
A. V.
Bazilevsky
,
V. M.
Entov
, and
A. N.
Rozhkov
, “
Breakup of a liquid bridge as a method of rheological testing of biological fluids
,”
Fluid Dyn.
46
,
613
(
2011
).
61.
M.
Stelter
,
G.
Brenn
,
A. L.
Yarin
,
R. P.
Singh
, and
F.
Durst
, “
Validation and application of a novel elongational device for polymer solutions
,”
J. Rheol.
44
,
595
(
2000
).
62.
M.
Stelter
,
G.
Brenn
,
A. L.
Yarin
,
R. P.
Singh
, and
F.
Durst
, “
Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer
,”
J. Rheol.
46
,
507
(
2002
).
63.
S. L.
Anna
and
G. H.
McKinley
, “
Elasto-capillary thinning and breakup of model elastic liquids
,”
J. Rheol.
45
,
115
(
2001
).
64.
L. E.
Rodd
,
T. P.
Scott
,
J. J.
Cooper-White
, and
G. H.
McKinley
, “
Capillary break-up rheometry of low-viscosity elastic fluids
,”
Appl. Rheol.
15
,
12
(
2005
).
65.
V.
Tirtaatmadja
,
G. H.
McKinley
, and
J. J.
Cooper-White
, “
Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration
,”
Phys. Fluids
18
,
043101
(
2006
).
66.
P. P.
Bhat
,
S.
Appathurai
,
M. T.
Harris
,
M.
Pasquali
,
G. H.
McKinley
, and
O. A.
Basaran
, “
Formation of beads-on-a-string structures during break-up of viscoelastic filaments
,”
Nat. Phys.
6
,
625
(
2010
).
67.
T.
Wunderlich
,
M.
Stelter
,
T.
Tripathy
,
B. R.
Nayak
,
G.
Brenn
,
A. L.
Yarin
,
R. P.
Singh
,
P. O.
Brunn
, and
F.
Durst
, “
Shear and extensional rheological investigations in solutions of grafted and ungrafted polysaccharides
,”
J. Appl. Polym. Sci.
77
,
3200
(
2000
).
68.
M. R.
Duxenneuner
,
P.
Fischer
,
E. J.
Windhab
, and
J. J.
Cooper-White
, “
Extensional properties of hydroxypropyl ether guar gum solutions
,”
Biomacromolecules
9
,
2989
(
2008
).
69.
J. P.
Plog
,
W. M.
Kulicke
, and
C.
Clasen
, “
Influence of the molar mass distribution on the elongational behaviour of polymer solutions in capillary breakup
,”
Appl. Rheol.
15
,
28
(
2005
).
70.
D.
Szopinski
,
U. A.
Handge
,
W.-M.
Kulicke
,
V.
Abetz
, and
G. A.
Luinstra
, “
Extensional flow behavior of aqueous guar gum derivative solutions by capillary breakup elongational rheometry (CaBER)
,”
Carbohydr. Polym.
136
,
834
(
2016
).
71.
A. Ö.
Bingöl
,
D.
Lohmann
,
K.
Püschel
, and
W.-M.
Kulicke
, “
Characterization and comparison of shear and extensional flow of sodium hyaluronate and human synovial fluid
,”
Biorheology
47
,
205
(
2010
).
72.
H.
Storz
,
U.
Zimmermann
,
H.
Zimmermann
, and
W.-M.
Kulicke
, “
Viscoelastic properties of ultra-high viscosity alginates
,”
Rheol. Acta
49
,
155
(
2010
).
73.
R.
De Dier
,
W.
Mathues
, and
C.
Clasen
, “
Extensional flow and relaxation of semi-dilute solutions of schizophyllan
,”
Macromol. Mater. Eng.
298
,
944
(
2013
).
74.
C.
Rodríguez-Rivero
,
L.
Hilliou
,
E. M. M.
del Valle
, and
M. A.
Galán
, “
Rheological characterization of commercial highly viscous alginate solutions in shear and extensional flows
,”
Rheol. Acta
53
,
559
(
2014
).
75.
L.
Campo-Deano
and
C.
Clasen
, “
The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments
,”
J. Non-Newtonian Fluid Mech.
165
,
1688
(
2010
).
76.
E.
Miller
,
C.
Clasen
, and
J. P.
Rothstein
, “
The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements
,”
Rheol. Acta
48
,
625
(
2009
).
77.
S. S.
Vadodaria
and
R. J.
English
, “
Extensional rheometry of cellulose ether solutions: Flow instability
,”
Cellulose
23
,
339
(
2016
).
78.
EFSA ANS Panel
,
A.
Mortensen
,
F.
Aguilar
,
R.
Crebelli
,
A.
Di Domenico
,
B.
Dusemund
,
M. J.
Frutos
,
P.
Galtier
,
D.
Gott
,
U.
Gundert-Remy
 et al, “
Re-evaluation of glycerol (E 422) as a food additive
,”
EFSA J.
15
,
e04720
(
2017
).
79.
C. G.
Lopez
,
R. H.
Colby
, and
J. T.
Cabral
, “
Electrostatic and hydrophobic interactions in NaCMC aqueous solutions: Effect of degree of substitution
,”
Macromolecules
51
,
3165
(
2018
).
80.
C. G.
Lopez
,
R. H.
Colby
,
P.
Graham
, and
J. T.
Cabral
, “
Viscosity and scaling of semiflexible polyelectrolyte NaCMC in aqueous salt solutions
,”
Macromolecules
50
,
332
(
2017
).
81.
C. G.
Lopez
,
S. E.
Rogers
,
R. H.
Colby
,
P.
Graham
, and
J. T.
Cabral
, “
Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study
,”
J. Polym. Sci., Part B: Polym. Phys.
53
,
492
(
2015
).
82.
X. H.
Yang
and
W. L.
Zhu
, “
Viscosity properties of sodium carboxymethylcellulose solutions
,”
Cellulose
14
,
409
(
2007
).
83.
D.
Charpentier-Valenza
,
L.
Merle
,
G.
Mocanu
,
L.
Picton
, and
G.
Muller
, “
Rheological properties of hydrophobically modified carboxymethylcelluloses
,”
Carbohydr. Polym.
60
,
87
(
2005
).
84.
S.
Dapía
,
C. A.
Tovar
,
V.
Santos
, and
J. C.
Parajó
, “
Rheological behaviour of carboxymethylcellulose manufactured from TCF-bleached milox pulps
,”
Food Hydrocolloids
19
,
313
(
2005
).
85.
E. H.
DeButts
,
J. A.
Hudy
, and
J. H.
Elliott
, “
Rheology of sodium carboxymethylcellulose solutions
,”
Ind. Eng. Chem.
49
,
94
(
1957
).
86.
J. H.
Elliot
and
A. J.
Ganz
, “
Some rheological properties of sodium carboxymethylcellulose solutions and gels
,”
Rheol. Acta
13
,
670
(
1974
).
87.
J.
Horinaka
,
K.
Chen
, and
T.
Takigawa
, “
Entanglement properties of carboxymethyl cellulose and related polysaccharides
,”
Rheol. Acta
57
,
51
(
2018
).
88.
P.
Komorowska
,
S.
Różańska
, and
J.
Różański
, “
Effect of the degree of substitution on the rheology of sodium carboxymethylcellulose solutions in propylene glycol/water mixtures
,”
Cellulose
24
,
4151
(
2017
).
89.
C. G.
Lopez
and
W.
Richtering
, “
Influence of divalent counterions on the solution rheology and supramolecular aggregation of carboxymethyl cellulose
,”
Cellulose
26
,
1517
(
2019
).
90.
K. W.
Hsiao
,
J.
Dinic
,
Y.
Ren
,
V.
Sharma
, and
C. M.
Schroeder
, “
Passive non-linear microrheology for determining extensional viscosity
,”
Phys. Fluids
29
,
121603
(
2017
).
91.
A. V.
Walter
,
L. N.
Jimenez
,
J.
Dinic
,
V.
Sharma
, and
K. A.
Erk
, “
Effect of salt valency and concentration on shear and extensional rheology of aqueous polyelectrolyte solutions for enhanced oil recovery
,”
Rheol. Acta
58
,
145
(
2019
).
92.
N. S.
Suteria
,
S.
Gupta
,
R.
Potineni
,
S. K.
Baier
, and
S. A.
Vanapalli
, “
eCapillary: a disposable microfluidic extensional viscometer for weakly elastic polymeric fluids
,”
Rheol. Acta
58
,
403
(
2019
).
93.
K. A.
Marshall
and
T. W.
Walker
, “
Investigating the dynamics of droplet breakup in a microfluidic cross-slot device for characterizing the extensional properties of weakly-viscoelastic fluids
,”
Rheol. Acta
58
,
573
(
2019
).
94.
M.
Rosello
,
S.
Sur
,
B.
Barbet
, and
J. P.
Rothstein
, “
Dripping-onto-substrate capillary breakup extensional rheometry of low-viscosity printing inks
,”
J. Non-Newtonian Fluid Mech.
266
,
160
(
2019
).
95.
Y.
Zhang
and
S. J.
Muller
, “
Unsteady sedimentation of a sphere in wormlike micellar fluids
,”
Phys. Rev. Fluids
3
,
043301
(
2018
).
96.
S. J.
Wu
and
H.
Mohammadigoushki
, “
Sphere sedimentation in wormlike micelles: Effect of micellar relaxation spectrum and gradients in micellar extensions
,”
J. Rheol.
62
,
1061
(
2018
).
97.
R.
Omidvar
,
S.
Wu
, and
H.
Mohammadigoushki
, “
Detecting wormlike micellar microstructure using extensional rheology
,”
J. Rheol.
63
,
33
(
2019
).
98.
V.
Sharma
,
S. J.
Haward
,
J.
Serdy
,
B.
Keshavarz
,
A.
Soderlund
,
P.
Threlfall-Holmes
, and
G. H.
McKinley
, “
The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): Extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer
,”
Soft Matter
11
,
3251
(
2015
).
99.
A. V.
Dobrynin
, “
Solutions of charged polymers
,”
Polym. Sci.: Compr. Ref.
1
,
81
(
2012
).
100.
A. V.
Dobrynin
,
R. H.
Colby
, and
M.
Rubinstein
, “
Scaling theory of polyelectrolyte solutions
,”
Macromolecules
28
,
1859
(
1995
).
101.
A. V.
Dobrynin
and
M.
Rubinstein
, “
Theory of polyelectrolytes in solutions and at surfaces
,”
Prog. Polym. Sci.
30
,
1049
(
2005
).
102.
R. M.
Fuoss
and
U. P.
Strauss
, “
Polyelectrolytes. II. Poly-4-vinylpyridonium chloride and poly-4-vinyl-N-n-butylpyridonium bromide
,”
J. Polym. Sci.
3
,
246
(
1948
).
103.
R. M.
Fuoss
, “
Polyelectrolytes
,”
Discuss. Faraday Soc.
11
,
125
(
1951
).
104.
M.
Muthukumar
, “
A perspective on polyelectrolyte solutions
,”
Macromolecules
50
,
9528
(
2017
).
105.
M.
Muthukumar
, “
Dynamics of polyelectrolyte solutions
,”
J. Chem. Phys.
107
,
2619
(
1997
).
106.
R. H.
Colby
, “
Structure and linear viscoelasticity of flexible polymer solutions: Comparison of polyelectrolyte and neutral polymer solutions
,”
Rheol. Acta
49
,
425
(
2010
).
107.
D. C.
Boris
and
R. H.
Colby
, “
Rheology of sulfonated polystyrene solutions
,”
Macromolecules
31
,
5746
(
1998
).
108.
S.
Dou
and
R. H.
Colby
, “
Solution rheology of a strongly charged polyelectrolyte in good solvent
,”
Macromolecules
41
,
6505
(
2008
).
109.
H.
Eisenberg
and
J.
Pouyet
, “
Viscosities of dilute aqueous solutions of a partially quaternized poly-4-vinyl pyridine at low gradients of flow
,”
J. Polym. Sci.
13
,
85
(
1954
).
110.
I.
Roure
,
M.
Rinaudo
,
M.
Milas
, and
E.
Frollini
, “
Viscometric behaviour of polyelectrolytes in the presence of low salt concentration
,”
Polymer
39
,
5441
(
1998
).
111.
C.
Holm
,
J. F.
Joanny
,
K.
Kremer
,
R. R.
Netz
,
P.
Reineker
,
C.
Seidel
,
T. A.
Vilgis
, and
R. G.
Winkler
, “
Polyelectrolyte theory
,” in
Polyelectrolytes with Defined Molecular Architecture II
(
Springer
,
2004
).
112.
M.
Muthukumar
, “
Polyelectrolyte dynamics
,”
Adv. Chem. Phys.
131
,
1
(
2005
).
113.
N. B.
Wyatt
and
M. W.
Liberatore
, “
Rheology and viscosity scaling of the polyelectrolyte xanthan gum
,”
J. Appl. Polym. Sci.
114
,
4076
(
2009
).
114.
W. E.
Krause
,
J. S.
Tan
, and
R. H.
Colby
, “
Semidilute solution rheology of polyelectrolytes with no added salt
,”
J. Polym. Sci., Part B: Polym. Phys.
37
,
3429
(
1999
).
115.
T. A.
Witten
and
P.
Pincus
, “
Structure and viscosity of interpenetrating polyelectrolyte chains
,”
Europhys. Lett.
3
,
315
(
1987
).
116.
J.
Cohen
and
Z.
Priel
, “
Viscosity of dilute polyelectrolyte solutions: Temperature dependence
,”
J. Chem. Phys.
93
,
9062
(
1990
).
117.
S. P.
Chen
and
L. A.
Archer
, “
Relaxation dynamics of salt-free polyelectrolyte solutions using flow birefringence and rheometry
,”
J. Polym. Sci., Part B: Polym. Phys.
37
,
825
(
1999
).
118.
Y.-J.
Chen
and
P.
Steen
, “
Dynamics of inviscid capillary breakup: Collapse and pinchoff of a film bridge
,”
J. Fluid Mech.
341
,
245
(
1997
).
119.
R. F.
Day
,
E. J.
Hinch
, and
J. R.
Lister
, “
Self-similar capillary pinchoff of an inviscid fluid
,”
Phys. Rev. Lett.
80
,
704
(
1998
).
120.
J.
Eggers
, “
Nonlinear dynamics and breakup of free-surface flows
,”
Rev. Mod. Phys.
69
,
865
(
1997
).
121.
J.
Dinic
and
V.
Sharma
, “
Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method
,”
Phys. Fluids
31
,
021211
(
2018
).
122.
Lord Rayleigh
, “
On the capillary phenomenon of jets
,”
Proc. R. Soc. London
29
,
71
(
1879
).
123.
V. M.
Entov
and
E. J.
Hinch
, “
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
,”
J. Non-Newtonian Fluid Mech.
72
,
31
(
1997
).
124.
C.
Clasen
,
J. P.
Plog
,
W. M.
Kulicke
,
M.
Owens
,
C.
Macosko
,
L. E.
Scriven
,
M.
Verani
, and
G. H.
McKinley
, “
How dilute are dilute solutions in extensional flows?
,”
J. Rheol.
50
,
849
(
2006
).
125.
J.
Zhou
and
M.
Doi
, “
Dynamics of viscoelastic filaments based on Onsager principle
,”
Phys. Rev. Fluids
3
,
084004
(
2018
).
126.
C.
Wagner
,
L.
Bourouiba
, and
G. H.
McKinley
, “
An analytic solution for capillary thinning and breakup of FENE-P fluids
,”
J. Non-Newtonian Fluid Mech.
218
,
53
(
2015
).
127.
O.
Arnolds
,
H.
Buggisch
,
D.
Sachsenheimer
, and
N.
Willenbacher
, “
Capillary breakup extensional rheometry (CaBER) on semi-dilute and concentrated polyethyleneoxide (PEO) solutions
,”
Rheol. Acta
49
,
1207
(
2010
).
128.
D.
Sachsenheimer
,
B.
Hochstein
, and
N.
Willenbacher
, “
Experimental study on the capillary thinning of entangled polymer solutions
,”
Rheol. Acta
53
,
725
(
2014
).
129.
S. J.
Haward
,
V.
Sharma
,
C. P.
Butts
,
G. H.
McKinley
, and
S. S.
Rahatekar
, “
Shear and extensional rheology of cellulose/ionic liquid solutions
,”
Biomacromolecules
13
,
1688
(
2012
).
130.
C.
Wagner
,
Y.
Amarouchene
,
D.
Bonn
, and
J.
Eggers
, “
Droplet detachment and satellite bead formation in viscoelastic fluids
,”
Phys. Rev. Lett.
95
,
164504
(
2005
).
131.
Y.
Amarouchene
,
D.
Bonn
,
J.
Meunier
, and
H.
Kellay
, “
Inhibition of the finite-time singularity during droplet fission of a polymeric fluid
,”
Phys. Rev. Lett.
86
,
3558
(
2001
).

Supplementary Material

You do not currently have access to this content.