This work presents a study of the influence of the filling level on the wave pattern during a sloshing problem. To this end, a rectangular tank of aspect ratio 2:1 is mounted on a shake table subject to controlled external motions. A frequency sweep analysis is performed nearest to the primary resonance frequency using two different amplitudes of imposed motion and different water depths. The wave evolution is registered at certain control points. In particular, this work is devoted to identifying the effect of the filling level on the dynamics of the wave patterns, emphasizing the nonlinearities of the free surface and their dependence on the water depth. The free surface measurements are compared with those obtained from a fixed mesh finite element simulation of the Navier-Stokes equations. The free surface is tracked using a Lagrangian technique. The effect of the bottom boundary conditions on the wave pattern is also evaluated from these simulations. From the experiments, it is confirmed that maximum and minimum wave heights do not change for larger water depth, i.e., when deep water conditions are fulfilled. This fact is also reflected by the numerical results. The computed wave evolution satisfactorily matches the experimental data. In addition, analytical solutions obtained using a potential flow approach are also evaluated. They fail in the description of nonlinear responses, but their coefficients can be numerically or experimentally characterized to fit more realistic solutions.

1.
K.
Hatayama
, “
Lessons from the 2003 Tokachi-Oki, Japan, earthquake for prediction of long-period strong ground motions and sloshing damage to oil storage tanks
,”
J. Seismol.
12
,
255
263
(
2008
).
2.
M.
Hosseini
,
M. A.
Goudarzi
, and
A.
Soroor
, “
Reduction of seismic sloshing in floating roof liquid storage tanks by using a suspended annular baffle (SAB)
,”
J. Fluids Struct.
71
,
40
55
(
2017
).
3.
L.
Battaglia
,
M.
Cruchaga
,
M.
Storti
,
J.
D’Elía
,
J. N.
Aedo
, and
R.
Reinoso
, “
Numerical modelling of 3D sloshing experiments in rectangular tanks
,”
Appl. Math. Modell.
59
,
357
378
(
2018
).
4.
O.
Faltinsen
,
O.
Rognebakke
, and
A.
Timokha
, “
Classification of three-dimensional nonlinear sloshing in a square-base tank with finite depth
,”
J. Fluids Struct.
20
,
81
103
(
2005
).
5.
M.
Eswaran
,
A.
Singh
, and
U.
Saha
, “
Experimental measurement of the surface velocity field in an externally induced sloshing tank
,”
Proc. Institut. Mech. Eng., Part M
225
,
133
148
(
2011
).
6.
D.
Liu
and
P.
Lin
, “
A numerical study of three-dimensional liquid sloshing in tanks
,”
J. Comput. Phys.
227
,
3921
3939
(
2008
).
7.
Y.
Kim
, “
Numerical simulation of sloshing flows with impact load
,”
Appl. Ocean Res.
23
,
53
62
(
2001
).
8.
M. A.
Cruchaga
,
R. S.
Reinoso
,
M. A.
Storti
,
D. J.
Celentano
, and
T. E.
Tezduyar
, “
Finite element computation and experimental validation of sloshing in rectangular tanks
,”
Comput. Mech.
52
,
1301
1312
(
2013
).
9.
H.
Akyildiz
and
E.
Ünal
, “
Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing
,”
Ocean Eng.
32
,
1503
1516
(
2005
).
10.
T.
Nasar
,
S. A.
Sannasiraj
, and
V.
Sundar
, “
Sloshing pressure variation in a barge carrying tank
,”
Ships Offshore Struct.
3
,
185
203
(
2008
).
11.
M.
La Rocca
,
G.
Sciortino
,
C.
Adduce
, and
M. A.
Boniforti
, “
Experimental and theoretical investigation on the sloshing of a two-liquid system with free surface
,”
Phys. Fluids
17
,
062101
(
2005
).
12.
P. C.
Sames
,
D.
Marcouly
, and
T. E.
Schellin
, “
Sloshing in rectangular and cylindrical tanks
,”
J. Ship Res.
46
,
186
200
(
2002
).
13.
P. A.
Caron
,
M. A.
Cruchaga
, and
A. E.
Larreteguy
, “
Study of 3D sloshing in a vertical cylindrical tank
,”
Phys. Fluids
30
,
082112
(
2018
).
14.
H.
Akyild
z
ı and
N. E.
Ünal
, “
Sloshing in a three-dimensional rectangular tank: Numerical simulation and experimental validation
,”
Ocean Eng.
33
,
2135
2149
(
2006
).
15.
D.
Liu
and
P.
Lin
, “
Three-dimensional liquid sloshing in a tank with baffles
,”
Ocean Eng.
36
,
202
212
(
2009
).
16.
H.-T.
Li
,
J.
Li
,
Z.
Zong
, and
Z.
Chen
, “
Numerical studies on sloshing in rectangular tanks using a tree-based adaptive solver and experimental validation
,”
Ocean Eng.
82
,
20
31
(
2014
).
17.
E.
Castillo
,
M. A.
Cruchaga
,
J.
Baiges
, and
J.
Flores
, “
An oil sloshing study: Adaptive fixed-mesh ALE analysis and comparison with experiments
,”
Comput. Mech.
63
,
985
998
(
2019
).
18.
M.
Souli
,
A.
Ouahsine
, and
L.
Lewin
, “
ALE formulation for fluid–structure interaction problems
,”
Comput. Methods Appl. Mech. Eng.
190
,
659
675
(
2000
).
19.
N.
Aquelet
,
M.
Souli
,
J.
Gabrys
, and
L.
Olovson
, “
A new ALE formulation for sloshing analysis
,”
Struct. Eng. Mech.
16
,
423
440
(
2003
).
20.
A.
Zhang
and
K.
Suzuki
, “
A comparative study of numerical simulations for fluid–structure interaction of liquid-filled tank during ship collision
,”
Ocean Eng.
34
,
645
652
(
2007
).
21.
H.
Zhou
,
J. F.
Li
, and
T. S.
Wang
, “
Simulation of liquid sloshing in curved-wall containers with arbitrary Lagrangian–Eulerian method
,”
Int. J. Numer. Methods Fluids
57
,
437
452
(
2008
).
22.
T. E.
Tezduyar
,
M.
Behr
,
S.
Mittal
, and
J.
Liou
, “
A new strategy for finite element computations involving moving boundaries and interfaces—The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders
,”
Comput. Methods Appl. Mech. Eng.
94
,
353
371
(
1992
).
23.
S.
Aliabadi
and
T. E.
Tezduyar
, “
Stabilized-finite-element/interface-capturing technique for parallel computation of unsteady flows with interfaces
,”
Comput. Methods Appl. Mech. Eng.
190
,
243
261
(
2000
).
24.
T. E.
Tezduyar
and
S.
Sathe
, “
Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques
,”
Int. J. Numer. Methods Fluids
54
,
855
900
(
2007
).
25.
K.
Takizawa
,
H.
Bradley
,
P.
Anthony
,
N.
Kostov
, and
T. E.
Tezduyar
, “
Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust
,”
Comput. Mech.
50
,
743
760
(
2012
).
26.
T.
Tezduyar
,
S.
Aliabadi
, and
M.
Behr
, “
Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces
,”
Comput. Methods Appl. Mech. Eng.
155
,
235
248
(
1998
).
27.
T. E.
Tezduyar
and
S.
Aliabadi
, “
Edict for 3D computation of two-fluid interfaces
,”
Comput. Methods Appl. Mech. Eng.
190
,
403
410
(
2000
).
28.
M.
Cruchaga
,
D.
Celentano
, and
T.
Tezduyar
, “
A moving Lagrangian interface technique for flow computations over fixed meshes
,”
Comput. Methods Appl. Mech. Eng.
191
,
525
543
(
2001
).
29.
M. A.
Cruchaga
,
D. J.
Celentano
, and
T. E.
Tezduyar
, “
Moving-interface computations with the edge-tracked interface locator technique (ETILT)
,”
Int. J. Numer. Methods Fluids
47
,
451
469
(
2005
).
30.
A. H.
Coppola-Owen
and
R.
Codina
, “
A finite element model for free surface flows on fixed meshes
,”
Int. J. Numer. Methods Fluids
54
,
1151
1171
(
2007
).
31.
R.
Codina
,
G.
Houzeaux
,
H.
Coppola-Owen
, and
J.
Baiges
, “
The fixed-mesh ale approach for the numerical approximation of flows in moving domains
,”
J. Comput. Phys.
228
,
1591
1611
(
2009
).
32.
J.
Baiges
,
R.
Codina
,
A.
Pont
, and
E.
Castillo
, “
An adaptive fixed-mesh ale method for free surface flows
,”
Comput. Methods Appl. Mech. Eng.
313
,
159
188
(
2017
).
33.
Y.-X.
Zhang
,
D.-C.
Wan
, and
T.
Hino
, “
Comparative study of MPS method and level-set method for sloshing flows
,”
J. Hydrodyn.
26
,
577
585
(
2014
).
34.
W.
Bai
,
X.
Liu
, and
C. G.
Koh
, “
Numerical study of violent LNG sloshing induced by realistic ship motions using level set method
,”
Ocean Eng.
97
,
100
113
(
2015
).
35.
Y.
Zhao
and
H.-C.
Chen
, “
Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method
,”
Ocean Eng.
104
,
10
30
(
2015
).
36.
M.
Serdar Celebi
and
H.
Akyildiz
, “
Nonlinear modeling of liquid sloshing in a moving rectangular tank
,”
Ocean Eng.
29
,
1527
1553
(
2002
).
37.
K. M. T.
Kleefsman
,
G.
Fekken
,
A. E. P.
Veldman
,
B.
Iwanowski
, and
B.
Buchner
, “
A volume-of-fluid based simulation method for wave impact problems
,”
J. Comput. Phys.
206
,
363
393
(
2005
).
38.
J.
Ed Akin
,
T. E.
Tezduyar
, and
M.
Ungor
, “
Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT)
,”
Comput. Fluids
36
,
2
11
(
2007
).
39.
M. A.
Cruchaga
,
D. J.
Celentano
, and
T. E.
Tezduyar
, “
Collapse of a liquid column: Numerical simulation and experimental validation
,”
Comput. Mech.
39
,
453
476
(
2007
).
40.
L.
Battaglia
,
M. A.
Storti
, and
J.
D’Elía
, “
Simulation of free-surface flows by a finite element interface capturing technique
,”
Int. J. Comput. Fluid Dyn.
24
,
121
133
(
2010
).
41.
M.
Cruchaga
,
D.
Celentano
,
P.
Breitkopf
,
P.
Villon
, and
A.
Rassineux
, “
A front remeshing technique for a Lagrangian description of moving interfaces in two-fluid flows
,”
Int. J. Numer. Methods Eng.
66
,
2035
2063
(
2006
).
42.
M.
Cruchaga
,
D.
Celentano
,
P.
Breitkopf
,
P.
Villon
, and
A.
Rassineux
, “
A surface remeshing technique for a Lagrangian description of 3D two-fluid flow problems
,”
Int. J. Numer. Methods Fluids
63
,
415
430
(
2010
).
43.
G. X.
Wu
,
Q. W.
Ma
, and
R. E.
Taylor
, “
Numerical simulation of sloshing waves in a 3D tank based on a finite element method
,”
Appl. Ocean Res.
20
,
337
355
(
1998
).
44.
J. B.
Frandsen
, “
Sloshing motions in excited tanks
,”
J. Comput. Phys.
196
,
53
87
(
2004
).
45.
R. A.
Ibrahim
,
V. N.
Pilipchuk
, and
T.
Ikeda
, “
Recent advances in liquid sloshing dynamics
,”
Appl. Mech. Rev.
54
,
133
199
(
2001
).
46.
M. A.
Cruchaga
and
E.
Oñate
, “
A finite element formulation for incompressible flow problems using a generalized streamline operator
,”
Comput. Methods Appl. Mech. Eng.
143
,
49
67
(
1997
).
47.
T. E.
Tezduyar
, “
Computation of moving boundaries and interfaces and stabilization parameters
,”
Int. J. Numer. Methods Fluids
43
,
555
575
(
2003
).
48.
M. A.
Cruchaga
,
D. J.
Celentano
, and
T. E.
Tezduyar
, “
Computational modeling of the collapse of a liquid column over an obstacle and experimental validation
,”
J. Appl. Mech.
76
,
021202
(
2009
).
49.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations: I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
50.
K.
Lilly
, “
On the application of the eddy viscosity concept in the inertial sub-range of turbulence
,” NCAR Manuscript 123,
1966
.
You do not currently have access to this content.